Меню

Тл494 в импульсном блоке питания с регулировкой тока и напряжения

TL494 схема включения, datasheet

Большая часть современных импульсных блоков питания изготавливается на микросхемах типа TL494, которая является импульсным ШИМ контроллером. Силовая часть изготавливается на мощных элементах, например транзисторах. Схема включения ТЛ494 простая, дополнительных радиодеталей требуется минимум, в datasheet подробно описано.

Варианты модификаций: TL494CN, TL494CD, TL494IN, TL494C, TL494CI.

Так же написал обзоры других популярных ИМС TL431, LM358 LM358N, LM317T.

Характеристики и функционал

Микросхема TL494 разработана как Шим контроллер для импульсных блоков питания, с фиксированной частотой работы. За задания рабочей частоты требуется два дополнительных внешних элемента резистор и конденсатор. Микросхема имеет источник опорного напряжения на 5В, погрешность которого 5%.

Область применения, указанная производителем:

Аналоги

Самыми известными аналогами микросхемы TL494 стали отечественная KA7500B, КР1114ЕУ4 от Fairchild, Sharp IR3M02, UA494, Fujitsu MB3759. Схема включения аналогичны, распиновка может быть другой.

Новая TL594 является аналогом ТЛ494 с повышенной точность компаратора. TL598 аналог ТЛ594 с повторителем на выходе.

Типовые схемы включения для БП на TL494

Повышающий преобразователь на 28В

Основные схемы включения TL494 собраны из даташитов различных производителей. Они могут служит основой для разработки аналогичных устройств с похожим функционалом.

Импульсный понижающий преобразователь на 5В

Схемы блоков питания

Сложные схемы импульсных блоков питания TL494 рассматривать не буду. Они требуют множества деталей и времени, поэтому изготавливать своими руками не рационально. Проще у китайцев купить готовый аналогичный модуль за 300-500руб.

Простой и мощный импульсный БП

Повышающий преобразователь с 12 на 220 Вольт.

При сборке повышающих преобразователей напряжения особое внимание уделяйте охлаждению силовых транзисторов на выходе. Для 200W на выходе будет ток около 1А, относительно не много. Тестирование на стабильность работы проводить с максимально допустимой нагрузкой. Необходимую нагрузку лучше всего сформировать из ламп накаливания на 220 вольт, мощностью 20w, 40w, 60w, 100w. Не стоит перегревать транзисторы более чем на 100 градусов. Соблюдайте правила техники безопасности при работе с высоким напряжением. Семь раз померяй, один раз включи.

Повышающий преобразователь на TL494 практически не требуют настройки, повторяемость высокая. Перед сборкой проверьте номиналы резисторов и конденсаторов. Чем меньше будет отклонение, тем стабильней будет работать инвертор с 12 на 220 вольт.

Контроль температуры транзисторов лучше производить термопарой. Если радиатор маловат, то проще поставить вентилятор, чтобы не ставить новый радиатор.

Блок питания на TL494 своими руками мне приходилось изготавливать для усилителя сабвуфера в автомобиле. В то время автомобильные инверторы с 12В на 220В не продавались, и у китайцев не было Aliexpress. В качестве усилителя УНЧ применил микросхему серии TDA на 80W.

За последние 5 лет увеличился интерес с технике с электрическим приводом. Этому поспособствовали китайцы, начавшие массовое производство электрических велосипедов, современных колесо-мотор с высоким КПД. Лучшей реализацией считаю двух колёсные и одноколесные гироскутеры.В 2015 году китайская компания Ninebot купила американской Segway и начал производства 50 видов электрических скутеров типа Сегвея.

Читайте также:  Регулировка оборотов канального вентилятора

Для управления мощным низковольтным двигателем требуется хороший контроллер управления.

Переделка ATX БП в лабораторный

У каждого есть радиолюбителя есть мощный блок питания ATX от компьютера, который выдаёт 5В и 12В. Его мощность от 200вт до 500вт. Зная параметры управляющего контроллера, можно изменить параметры ATX источника. Например повысить напряжение с 12 до 30В. Популярны 2 способа, один от итальянских радиолюбителей.

Рассмотрим итальянский способ, который максимально простой и не требует перемотки трансформаторов. Выход ATX полностью убирается и дорабатывается согласно схеме. Огромное количество радиолюбителей повторили эту схему благодаря своей простоте. Напряжение на выходе от 1В до 30В, сила тока до 10А.

Datasheet

Микросхема настолько популярна, что её выпускает несколько производителей, навскидку я нашел 5 разных даташитов, от Motorola, Texas Instruments и других менее известных. Наиболее полные datasheet TL494 у Моторолы, который и опубликую.

Все даташиты, можно каждый скачать:

Источник

tibirium › Блог › Самодельный импульсный блок питания с регулировкой напряжения и тока.

Такой тип источников питания ещё называют лабораторными, и не зря!Он подойдет не только для питания различных устройств, но и как универсальное зарядное устройство для абсолютно любых аккумуляторов.

1 Внутренний источник питания.

Представляет из себя любой компактный источник напряжение 12 вольт и током не менее 300 мА.Предназначен для питания шим контроллера, вентилятора охлаждения и вольтамперметра.Можно использовать абсолютно любой адаптер на 12 вольт. Рассказывать как собрать такой в этой статье не буду, будем использовать готовый AC-DC преобразователь с китая вот такого типа:

Представляет из себя микросхему TL494 c небольшим драйвером на 4-х транзисторах:

Благодаря использованию встроенных операционных усилителей обвязка TL494 получается очень простая, такое включение широко распространено у радиолюбителей.Резистором R4 задаём желаемое максимальное напряжение, R2- ток.R11 и R12 для удобства могут быть многооборотные, но я использую обычные.
При использовании ЛУТ плату управления я как правило собираю на отдельной платке:

3 Силовая часть.
Основную часть компонентов можно использовать из старого компьютерного блока питания, главное чтобы он был соответствующей топологии.

Лицевая панель нарисована в frontdesigner 3.0 и распечатана на самоклеящейся фотобумаге, затем заламинирована самоклеящаяся пленкой для учебников и книг(есть в любом офис маге).

Комментарии 196

Здравствуйте. Мне очень понравился данный блок питания. Скачал архив, но он не открывается.
Пишет, что архив поврежден. Заранее спасибо!

Здравствуйте. Проверил, всё работает. Проблема у вас, попробуйте обновите архиватор.

Да действительно. Обновил архиватор и все получилось. Большое спасибо Вам.

Да я имел ввиду защиту максимальной мощности.Большое спасибо за ответы, буду собирать.

Читайте также:  Echo cs 350wes регулировка карбюратора

Здравствуйте! На плате между положительным выходом и входом Uвых блока управления стоит подстроечный резистор (на схеме его нет). Подскажите, пожалуйста, его номинал.

Он стоит для удобной настройки Uмах, я использую на 50к

В таком случае поясните в каком случае нужна защита от кз, если кз для лбп это штатный режим. Перенапряжение- это вообще что в вашем понимании? Как это вообще может относится к нормально работающему лбп. Может вы про защиту от макс мощности, так не надо в целом закладывать такие некорректные диапазоны, ну а если уж очень надо то делать правильно на токовом трансе как в этом варианте yandex.ru/efir/?stream_id=vjmaXpmLF7Ro, там я использовал другую шим, но и к этой аналогично можно прикрутить к 4 ноге.
Ампервольтметр подключается отдельно, его шунт использовать не надо. Точность зависит от партии, за свои деньги нормальная. При мощности до 700-900ват на каком драйвере собирать разница не существенна.

Здравствуйте! Понравилась ваша схема, но хотелось бы ток больше, что надо изменить в цепях управления? И как реаализовать защиту от превышения тока.

Увеличить ток можно либо уменьшением сопротивления шунта, либо резистора R2.Про защиту не понял о чём вы? Кз штатный режим бп на любом установленном токе.

Здравствуйте. Добавите модуль управления 2 в sprint-layout?

Источник

Тл494 в импульсном блоке питания с регулировкой тока и напряжения

Этот стабилизатор обладает неплохими характеристиками, имеет плавную регулировку тока и напряжения, хорошую стабилизацию, без проблем терпит короткие замыкания, относительно простой и не требует больших финансовых затрат. Он обладает высоким кпд за счет импульсного принципа работы, выходной ток может доходить до 15 ампер, что позволит построить мощное зарядное устройство и блок питания с регулировкой тока и напряжения. При желании можно увеличить выходной ток до 20-и и более ампер.

За счет применения полевых ключей удалось значительно увеличить нагрузочную способность источника и снизить нагрев на силовых ключах. При выходном токе до 4-х ампер транзисторы и силовой диод можно не устанавливать на радиаторы.

Номиналы некоторых компонентов на схеме могут отличаться от номиналов на плате, т.к. плату разрабатывал для своих нужд.

Диапазон регулировки выходного напряжения от 2-х до 28 вольт, в моем случае максимальное напряжение 22 вольта, т.к. я использовал низковольтные ключи и поднять напряжение выше этого значения было рискованно, а так при входном напряжении около 30 Вольт, на выходе спокойно можно получить до 28-и Вольт. Диапазон регулировки выходного тока от 60mA до 15A Ампер, зависит от сопротивления датчика тока и силовых элементов схемы.

Устройство не боится коротких замыканий, просто сработает ограничение тока.

Читайте также:  Регулировка клапанов сузуки свифт

Собран источник на базе ШИМ контроллера TL494, выход микросхемы дополнен драйвером для управления силовыми ключами.

Хочу обратить ваше внимание на батарею конденсаторов установленных на выходе. Следует использовать конденсаторы с низким внутренним сопротивлением на 40-50 вольт, с суммарной емкостью от 3000 до 5000мкФ.

Нагрузочный резистор на выходе применен для быстрого разряда выходных конденсаторов, без него измерительный вольтметр на выходе будет работать с запаздыванием, т.к. при уменьшении выходного напряжения конденсаторам нужно время, для разрядки, а этот резистор быстро их разрядит. Сопротивление этого резистора нужно пересчитать, если на вход схемы подается напряжение больше 24-х вольт. Резистор двух ваттный, рассчитан с запасом по мощности, в ходе работы может греться, это нормально.

Как это работает:

ШИМ контроллер формирует управляющие импульсы для силовых ключей. При наличии управляющего импульса транзистор, и питание по открытому каналу транзистора через дроссель поступает на накопительный конденсатор. Не забываем, что дроссель является индуктивной нагрузкой, которым свойственно накапливание энергии и отдача за счет самоиндукции. Когда транзистор закрывается накопленный в дросселе заряд через диод шоттки продолжит подпитывать нагрузку. Диод в данном случае откроется, т.к. напряжение с дросселя имеет обратную полярность. Этот процесс будет повторяться десятки тысяч раз в секунду, в зависимости от рабочей частоты микросхемы ШИМ. По факту ШИМ контроллер всегда отслеживает напряжение на выходном конденсаторе.

Минимальное выходное напряжение составляет порядка 2 вольт, задается указанным делителем, при желании можно поиграться с сопротивлением резисторов для получения приемлемых для вас значений, не советуется снижать минимальное напряжение ниже 1 вольта.

Для отслеживания потребляемого нагрузкой тока установлен шунт. Для организации функции ограничения тока задействован второй усилитель ошибки в составе ШИМ контроллера тл494. Падение напряжения на шунте поступает на неинвертирующий вход второго усилителя ошибки, опять сравнивается с опорным, а дальше происходит точно тоже самое, что и в случае стабилизации напряжения. Указанным резистором можно регулировать выходной ток.

Токовый шунт изготовлен из двух параллельно соединённых низкоомных резисторов с сопротивлением 0,05Ом.

Накопительный дроссель намотан на желто белом кольце от фильтра групповой стабилизации компьютерного блока питания.

Так как схема планировалась на довольно большой входной ток, целесообразно использовать два сложенных вместе кольца. Обмотка дросселя содержит 20 витков намотанных двумя жилами провода диаметром 1,25мм в лаковой изоляции, индуктивность около 80-90 микрогенри.

Диод желательно использовать с барьером Шоттки и обратным напряжением 100-200 вольт, в моем случае применена мощная диодная сборка MBR4060 на 60 вольт 40 Ампер.

Силовые ключи вместе с диодом устанавливают на общий радиатор, притом изолировать подложки компонентов от радиатора не нужно, т.к. они общие.

Подробное описание и испытания блока можно посмотреть в видео

Источник