Меню

Схема регулировки led дисплея

Лада 2110 Золото инков › Бортжурнал › Светодиоды, плавный розжиг и регулировка яркости светодиодов

Решил сделать светодиодную подсветку, в электрики не разбираюсь, поэтому для начала как всегда просмотрел все сайты, всевозможные материалы! За основу было решено взять схему Poraboloida (содноименного сайта). Все элементы были слегкостью подобранны в магазине радиодеталей. Вообщем для плавного розжига понадобилось:

диод 1N4148 — 1 шт (2шт — если подключать схему к габаритам и замку зажигания)
резистор 4.7 килоома — 1шт
резистор 120 килоом — 1шт
резистор 10 килоом — 1 шт
резистор 51 килоом — 1 шт
полевой транзистор IRF9540 или (КП785А) — 1 шт
конденсатор 220 микрофарад — 1шт
транзистор КТ503 — 1шт
светодиодная лента

Можно сказать, это моя первая спайка схемы) поэтому не применял печатную плату) и всё получилось в виде паутины).

Под тамометром есть место для дисплей который показывает часы и уличную температуру, т.к. его нет там, оно пустое. Во что как раз и поместилась данная схема =)

Для теста схемы использовал блок питания от ноута. Порядок подлючения, в красной колодке 3 разъём это масса, 4 выключатель освещения приборов. В белой колодке 4 разъём +12
от аккамулятора!

Следовательно, чтоб схема заработала в домашних условия, провод с массы накручиваев на внешнию сторону штекера блока питания, +12 от аккамулятора суём внутрь штекера!теперь для того чтоб влючилась подсветка, берем провод от разъема включения освещения приборов и вставляем его к проводу от аккамулятора! ждем парру секунд и приборка начинает медленно разгораться, соответственно убирая провод она медленно выключается! Если вытащить оба провода, то освещение пропадет сразу!

После установки, оказалось что яркость светодиодом очень велика, поэтому пришлось устанавливать регулятор яркости. Тут все просто, понадобиться: Реостат на 47 кОм и стабилизатор тока LM317 (схема взята с сайта диодмаг).

Вообщем, результатомдоволен, за исключение одной мелочи, при подключение в машине, время в с момента включения габаритов до включения самого розжига составляет порядка 10 сек, с чем связанно? никто не сталкивался с такой ситуацией в данной схеме?

Источник

Управление LED-подсветкой в ЖК мониторах Samsung

Принципы работы LED-подсветки в мониторах Samsung

Приведем основные принципы управления LED-подсветкой, которые используются в настоящее время в ЖК мониторах:

Эти основные принципы могут быть выражены графически, в виде блок-схемы, описывающей архитектуру LED-подсветки (рис. 2).

Однако в мониторах Samsung имеется совершенно другой подход к управлению LED-подсветкой.

Во-первых, во многих панелях Samsung LED-линейка имеет специфический соединительный разъем (рис. 3), выведенный на тыльную сторону ЖК панели.

Во-вторых, узел LED-подсветки подключается не к управляющей плате ЖК панели, а к основной плате монитора, часто называемой платой скалера (рис. 4).

В-третьих, светодиоды управляются микросхемой скалера, точнее комбинированной микросхемой процессор-скалер. Другими словами, во многих мониторах Samsung не применяются специализированные LED-драйверы. Разработчики этой концепции решили не увеличивать количество микросхем, и, соответственно, стоимость изделия, так как наличие в составе процессора-скалера цифровых программируемых портов вполне позволяет организовать полноценное управление LED-подсветкой и без дополнительных контроллеров (ИМС). Общая архитектура монитора Samsung с LED-подсветкой представлена на рис. 5.

Здесь необходимо сделать важное дополнение — в рамках данного обзора речь идет лишь о мониторах с внешними блоками питания (сетевыми адаптерами). Возможно, что мониторы со встроенными блоками питания имеют такую же концепцию построения, однако автору это доподлинно неизвестно.

Итак, в LED-мониторах Samsung присутствует всего одна печатная плата, на которой размещены несколько функциональных модулей:

Принципиальная схема модуля, управляющего LED-подсветкой (LED-драйвера) в мониторах Samsung, представлена на рис. 7.

Обзор схемы LED-драйвера

Обе схемы контролируются микросхемой скалера, которая, кроме функций обработки цветовых сигналов, выполняет еще и другие вспомогательные функции с помощью программируемых портов ввода-вывода.

Читайте также:  Регулировка арматуры сливного бачка инкоэр

Силовой транзистор управляется импульсами, которые формируются выходным цифровым портом скалера (выв. 96). Управление выходным напряжением VLED осуществляется по принципу ШИМ методом Burst Mode (режим прерывающейся модуляции). Это означает, что на выв. 96 скалера генерируются пачки высокочастотных импульсов с частотой заполнения при-мерно 330 кГц и частотой пачек около 160 Гц. При этом ширина пачек изменяется при регулировке яркости, т.е. зависит от величины нагрузки DC/DC-преобразователя. При максимальной яркости высокочастотные импульсы следуют практически не прерываясь (100% коэффициент заполнения D (Duty Cycle)), и ширина пачек становится максимальной. Форма управляющих импульсов и форма напряжения на стоке Q802 представлены на рис. 9.

Здесь следует отметить, что изменение ширины пачек управляющих импульсов DC/DC-преобразователя при регулировке яркости является лишь следствием увеличения тока через светодиоды LED-линейки, а не способом регулировки яркости. Характерно, что величина VLED практически не изменяется при регулировке яркости, и напряжение всегда остается стабильным на уровне около 31 В. Увеличение тока светодиодов, фактически, является увеличением мощности нагрузки DC/DC-преобразователя. Поэтому для поддержания стабильности выходного напряжения DC/DC-преобразователь должен увеличить свою мощность, и делается это именно увеличением ширины управляющих пачек.

Важным элементом преобразователя является токовый датчик R831 R832 R833, измеряющий величину тока силового ключа Q802. Напряжение, формируемое на этих резисторах (сигнал ISEN), прямо пропорционально величине тока, протекающего через Q802. Это напряжение подается на вход скалера (выв. 92), который является входным аналоговым портом. Когда напряжение на этом выводе превышает запрограммированный уровень, транзистор Q802 закрывается, в результате чего предотвращается его пробой.

Для контроля и стабилизации выходного напряжения преобразователя имеется цепь обратной связи из элементов R811-R814, C804. Напряжение, пропорциональное VLED (сигнал VSEN), прикладывается к аналоговому входному порту скалера (выв. 97). Это аналоговое напряжение оцифровывается внутренним АЦП, и полученное значение используется для управления шириной импульсов на выходном цифровом порте (выв. 96).

Коммутация тока каждой из четырех LED-линеек осуществляется независимо. В рассматриваемой схеме каждая линейка коммутируется парой параллельно-включенных MOSFET-транзисторов, например Q811 и Q812. Параллельное включение, по видимому, здесь необходимо лишь для снижения мощности, рассеиваемой на каждом из транзисторов. Таким образом, для управления четырьмя LED-линейками применяется восемь MOSFET-транзисторов Q811-Q818. Все они управляются абсолютно синхронно импульсами, следующими с частотой около 160 Гц. Таким образом, светодиоды задней подсветки питаются импульсным током, включаясь и выключаясь с частотой 160 Гц, незаметной для человеческого зрения. Изменение ширины импульсов, т.е. времени свечения светодиодов, приводит к изменению яркости задней подсветки.

Все восемь транзисторов имеют достаточно необычное включение по схеме с общим затвором, на затворы транзисторов подается постоянное напряжение смещения 4 В. При этом ток LED-линеек коммутируется ключами внутренних портов скалера. Такое включение внутренних и внешних транзисторов можно считать каскодной схемой (рис.10).

Контроль функционирования силовых транзисторов и их защита осуществляется подачей на входные порты скалера сигналов, пропорциональных импульсам на стоках силовых ключей (сигналы LED1…LED4). Сигналы обратной связи подаются через резисторыR851-R858 номиналом 1 МОм.

Возможные неисправности LED-драйвера

Монитор не включается. Внешний блок питания монитора периодически «цыкает», что говорит о срабатывании защиты от короткого замыкания. При этом, когда внешний блок питания включается без нагрузки, на его выходе появляется напряжение +14 В (+14V)
Такое поведение монитора может говорить о неисправности (пробое) силового транзистора Q802 (AP9997GH). Следует отметить, что такое поведение монитора может быть вызвано и неисправностью другого элемента — микросхемы IC600 (BD9329), которая является импульсным DC/DC-преобразователем, формирующим напряжение +5 В (+5V_MAIN).

Монитор не включается. Задняя подсветка не светится
Блок питания нормально вырабатывает напряжение +14V. Напряжение +5V_MAIN формируется и соответствует номиналу. Все остальные постоянные напряжения 3,3 и 1,8 В (+3.3V и +1.8V) также формируются. Напряжение VLED равно +14V. Такое поведение монитора говорит, скорее всего, о неработоспособности скалера, что может быть вызвано самыми разными причинами.

Читайте также:  Элеваторный узел с автоматической регулировкой

Монитор включается. Но экран не светится, т.к. не работает задняя подсветка. При этом изображение на экран выводится, о чем можно узнать, если приглядеться к экрану
Напряжение VLED равно +14V. Такая неисправность однозначно указывает на неработающую заднюю подсветку. В данном случае следует обратить внимание на скалер, транзисторы Q802, Q821-Q823.

Источник

LED-драйверы задней подсветки ЖК панелей. Схемотехника на примере ИМС ADD5201

Буквально несколько лет назад в качестве задней подсветки ЖК панелей широко применялись флуоресцентные лампы различных типов (CCFL — Cold Cathode Fluorescence Lamp, EEFL — External Electrode Fluorescent Lamp). В настоящее время практически все панели, за очень редким исключением, в качестве источника света задней подсветки используют белые светодиоды (White LED — WLED). Так как размеры светодиодов малы, то для создания светового потока соответствующей мощности требуется большое количество светодиодов, как правило, исчисляемое несколькими десятками. Чаще всего их размещают на подложке в виде узкой светодиодной линейки (рис. 1).

Все множество светодиодов разбивается на несколько групп последовательно включенных светодиодов — WLED-линеек. В каждой такой группе находится от 6 до 10 WLED. Таким образом, если для задней подсветки необходимо, например, 64 WLED, то их можно распределить на 8 линеек, каждая из которых будет состоять из 8 последовательно включенных светодиодов (рис. 2).

Ток каждого WLED, используемого в задней подсветке, как правило, находится в диапазоне 20…40 мА. Поэтому в каждой линейке должен протекать ток именно этой величины. Также следует напомнить, что падение напряжения на открытом WLED находится, чаще всего, в диапазоне 3…4 В. Таким образом, к WLED-линейке необходимо приложить напряжение, приблизительно равное произведению количества светодиодов на величину падения напряжения на одном из них (именно поэтому на рис. 2 указано напряжение питания 34 В).

Еще на один аспект работы задней подсветки необходимо обратить внимание — это стабилизация и регулировка тока светодиодов. Без стабилизации тока невозможно говорить о качественной подсветке, так как без обратной связи световой поток будет изменяться под действием различных факторов, например, в зависимости от температуры WLED. Потому необхо-
димо контролировать величину тока, протекающего через светодиоды, и в случае изменения тока его необходимо стабилизировать.

Теперь несколько слов о регулировке. Любой дисплей предполагает регулировку такого параметра изображения, как яркость. Регулировка яркости в ЖК панелях традиционно осуществляется изменением мощности светового потока задней подсветки, т.е. изменением яркости источника света. Поэтому в системе задней подсветки необходимо предусмотреть возможность изменения тока светодиодов в ответ на некоторое внешнее управляющее воздействие (например, вращение ручки регулировки яркости). При этом изменение тока светодиодов должно осуществляться пропорционально величине входного управляющего сигнала. Процесс регулировки яркости в зарубежной литературе называют диммингом (Dimming).

Таким образом можно отметить, что корректная работа светодиодов невозможна без соответствующего управления, осуществляемого специализированными микросхемами-контроллерами. Эти ИМС называются драйверами светодиодов (LED Driver). К функциям LED Driver также можно отнести и включение-выключение светодиодов по внешнему управляющему сигналу (рис. 3). Под термином LED Driver понимают, с одной стороны, микросхему, а с другой стороны, весь модуль, включающий и микросхему, и ее внешние элементы.

В настоящее время для управления светодиодами разработаны микросхемы LED-драйверов, выполняющие абсолютно все необходимые функции. Интегральное исполнение этих микросхем позволяет сделать схему управления LED чрезвычайно компактной.

Читайте также:  Порядок регулировки клапанов ваз 2107 карбюратор таблица

Рис. 4. Структура LED-драйвера

В современных ИМС LED-драйверов узел DC/DC-преобразователя интегрирован в ИМС. Это позволяет значительно упростить схему подсветки за счет снижения количества внешних элементов, а также за счет использования единой схемы управления. Традиционным решением для современных LED-драйверов является интегральное исполнение силового транзистора BOOST-регу ля то ра и наличие встроенной схемы ШИМ контроллера, управляющего этим силовым транзистором (рис. 6). Такое исполнение позволяет LED-драйверу контролировать напряжение светодиодов, управлять им и осуществлять защиту от превышения данного напряжения.

Теперь перейдем к рассмотрению реальной схемы LED-драйвера. В настоящее время LED-драйверы и DC/DC-преоб ра зо ватели напряжения светодиодов физически размещаются на управляющей плате ЖК панели. Существуют и другие варианты, например, когда LED-драйвер расположен на основной плате монитора (рис. 7). Но такое решение не носит массового характера, поэтому остановимся на традиционных подходах.

Сегодня производители микросхем предлагают различные LED-драйверы в количестве, достаточном для выпуска справочника по ним на многие сотни страниц. В матрице, которая попала к автору на ремонт, для управления задней подсветкой используется контролер ADD5201, выпускаемый компанией Analog Devices. Сама же панель типа LP173WD1(TL) (N2) производится компанией LG. ИМС LED-драйвера находится недалеко от микросхемы TCON и рядом с разъемом, к которому подключается модуль задней подсветки (рис. 8).

На ЖК панель поступают цифровые данные о цвете в формате LVDS через внешний 40-контактный однорядный разъем CN1. Кроме сигналов LVDS через контакты 31-40 разъема CN1 на матрицу подаются сигналы управления LED-подсветкой.

Разъем для подключения светодиодных линеек CN2 является 9-контактным, однако два из них не задействованы. В данной модели матрицы все светодиоды объединены в пять цепочек (рис. 9).

Принципиальная электрическая схема LED-драйвера ЖК панели LP173WD1 на основе ИМС ADD5201 приведена на рис. 10. Количество внешних элементов ИМС минимально. Пояснения к принципиальной схеме представлено в виде описания назначения выводов ADD5201, приведенного в таблице. ИМС ADD5201 предназначена для управления восемью LED-линейками, в то время как в рассматриваемой схеме она управляет пятью LED-линейками. Остальные выводы, соответствующие управлению светодиодами (выв. 13-15) подключены к «земле», и неясно, то ли эти контакты не используются, то ли они могут быть задействованы для управления светодиодами, но выключены только в данной схеме.

Лучшее понимание того, как функционирует ADD5201, дает ее блок-схема, она приведена на рис. 11.

Типовые неисправности LED-подсветки на основе ИМС ADD5201

Хочется отметить, что микросхема ADD5201 достаточно часто применяется для построения драйверов, управляющих LED-подсветкой ЖК панелей. Ее можно встретить на панелях самых разных производителей и самых разных размеров. Также следует упомянуть, что из-за большой популярности этой микросхемы и ее широкого применения, количество упоминаний ADD5201 при описании неисправностей LED-подсветки достаточно велико.

При неработающей LED-подсветке, в первую очередь, необходимо обратить внимание на токовый предохранитель, установленный в цепи питания LED-драйвера (F2 на рис. 10). Сгоревший предохранитель — далеко не редкость в подобных схемах.

Если предохранитель в обрыве, то в обязательном порядке следует убедиться в исправности силового транзистора BOOST-регулятора, интегрированного в ADD5201. Типовой проблемой этого транзистора является его пробой. Убедиться в отсутствии пробоя транзистора можно измерением сопротивления между выводами 23, 24 микросхемы ADD5201 и «землей». Наличие низкого сопротивления (единицы Ом) указывает на неисправность транзистора и на необходимость замены микросхемы.

Если предохранитель цел, но LED-подсветка при этом не работает, а на светодиоды подается напряжение около 12 В (равно входному напряжению VLED), то можно говорить о неисправности микросхемы ADD5201.

Интернет-ресурсы
1. ссылка скрыта от гостей

Алексей Конягин
Журнал «Ремонт и Сервис»​

Источник

Adblock
detector