Меню

Регулятор давления газовый регулировка где расположен

Регулятор давления газа принцип работы

Устройство и принцип работы регулятора давления

Регулятор давления газа или редукционный клапан предназначен для снижения давления в линии отводимой от основной и поддержании этого давления на постоянном уровне.

Регуляторы давления используют для поддержания давления, необходимого для работы пневматического, газового или другого оборудования.

Устройство регулятора давления

Принципиальная схема регулятора давления показана на рисунке.

В корпусе клапана установлена пружина 1, поджатие который регулируется винтом 2. Пружина через мембрану 3 и толкатель 4 воздействует на седельный клапан 7, на который в противоположном направлении воздействует пружина 8.

Давление на выходе зависит от величины зазора между клапаном 7 и седлом 5, кроме того оно воздействующие на мембрану 3 через канал 6.

Представленный клапан имеет два канала входной и выходной, поэтому его называют двухлинейным.

Регуляторы давления РДНК: особенности конструкции, принцип работы и применение

Регуляторы давления газа РДНК широко применяются в системах газоснабжения.

Конструкция и принцип действия РДНК

РДНК представляет собой комбинированный регулятор давления газа. Он состоит из собственно регулятора давления, предохранительного сбросного клапана и автоматического отключающего устройства, работающих независимо друг от друга.

В состав регулятора давления входят корпус с мембранной камерой и крестовина с седлом.

На мембране расположен предохранительный сбросной клапан. Мембрана закреплена в корпусе с помощью крышки, в которой имеется ниппель, предназначенный для сброса газа в атмосферу в случае повышения выходного давления. Для настройки параметров выходного давления предназначены регулировочный винт и пружина, помещенный в стакан, находящийся в крышке мембранной камеры.

В автоматическом отключающем устройстве имеется мембрана с толкателем. Отсечной клапан фиксируется в открытом положении с помощью штока, прижатого пружиной к толкателю. Для настройки отключающего устройства по повышению и понижению выходного давления предназначены пружины, пробка и втулка.

Принцип работы регулятора давления газа РДНК можно описать следующим образом.

Газ со средним или высоким давлением поступает в регулятор через входной патрубок и проходит через щель между седлом и рабочим клапаном. Здесь его давление понижается до нужного уровня.

Импульс контролируемого давления поступает под мембрану регулятора и в надмембранное пространство отключающего устройства. В случае повышения выходного давления происходит автоматическое открытие сбросного клапана, и излишки газа сбрасываются в атмосферу.

Последующее повышение давления на выходе вызывает перемещение мембраны отключающего устройства, и отсечной клапан перекрывает поступление газа. То же самое происходит при снижении выходного давления.

Типы регуляторов

Основная классификация предполагает разделение регулирующих узлов по принципу действия.

Различаются обратные и прямые устройства. Редуктор с обратным действием работает на понижение давления по мере выхода газа.

Конструкция таких устройств включает клапаны, камеры для буферного содержания смеси, регулировочный винт и фурнитурные приспособления.

Прямое действие означает, что регулятор будет работать на повышение давления при выпуске газа.

Также различают модели редукторов по типу обслуживаемого газа, количеству ступеней редуцирования и месту использования. Например, существуют регуляторы давления газа для баллонов, трубопроводных сетей и рамп (горелок).

В случае с баллонами тип газа определит и способ подключения устройства.

Практически все модели редукторов, кроме ацетиленовых, соединяются с баллонами посредством накидных гаек. Устройства, работающие с ацетиленом, обычно фиксируются к емкости хомутами с упорным винтом.

Предусматриваются и внешние отличия между редукторами – это может быть маркировка по цвету и указанием информации о рабочей смеси.

Источник

Регуляторы давления. Настройка регуляторов

Регуляторы давления снижают и поддерживают постоянное давление газа в заданных пределах путем изменения расхода протекающего через регулирующий клапан газа.

По принципу действия регуляторы давления подразделяются на регуляторы непосредственного действия (прямого) и регуляторы непрямого действия, причем как первые, так и вторые могут быть прерывного и непрерывного действия.

В регуляторе непосредственного или прямого действия регулирующий орган находится под действием регулируемого параметра или прямо, или через зависимый параметр, и при изменении регулируемого параметра приводится в действие усилием, возникающим в чувствительном элементе регулятора и достаточным для перестановки регулирующего органа без какого-либо постороннего источника энергии.

В регуляторе непрямого действия (автоматический регулятор) чувствительный элемент воздействует на регулирующий орган посторонним самостоятельным источником энергии, которым могут служить воздух, газ, жидкость и т. п. При изменении величины регулируемого параметра усилие, возникающее в чувствительном элементе регулятора, приводит в действие лишь вспомогательное устройство.

Оба вида регуляторов состоят из регулирующего клапана, чувствительного (измерительного) и управляющего элементов.

В регуляторах непосредственного действия чувствительный и управляющий элементы являются составными частями привода регулирующего клапана и неотделимы от него. У регулятора прямого действия чувствительный и управляющий элементы — самостоятельные приборы, отделенные от регулирующего клапана.

Регуляторы непосредственного действия по сравнению с регуляторами непрямого действия обладают меньшей чувствительностью. Это объясняется тем, что клапан при изменении величины регулируемого параметра начинает перемещаться только после возникновения усилия, достаточного для преодоления сил трения во всех подвижных частях. У регулятора непрямого действия силы трения преодолеваются за счет постороннего источника энергии, и не требуется значительного изменения усилий на мембрану. Поэтому регулирование происходит здесь более плавно. Однако независимо от принципа действия регуляторы должны всегда обеспечивать достаточно устойчивое регулирование.

Регуляторы давления непосредственного (прямого) действия. Регулятор представляет собой дроссельное устройство, приводимое в действие мембраной, находящейся под воздействием регулируемого давления. Всякое изменение давления газа вызывает перемещение мембраны, а вместе с ней и изменение проходного сечения дроссельного устройства, что влечет за собой уменьшение или увеличение расхода газа, протекающего через регулятор. Таким образом, обеспечивается постоянство давления на заданном уровне.

Регуляторы подразделяются в зависимости от формы и типа дроссельных устройств, вида мембран (плоские и манжетные), способов сочленения мембран с клапанами, рода нагрузки для уравновешивания давления газа на мембрану. Выпускаются регуляторы давления непосредственного действия, у которых передача импульса давления — расхода на мембрану идет через трубу, соединенную с газопроводом, подводящим газ к регулятору (регуляторы «до себя»), и регуляторы «после себя», где импульс передается на мембрану через трубку, соединенную с газопроводом после регулятора.

Читайте также:  Ir2153 описание на русском регулировка длительности импульса

В зависимости от типа клапанов регуляторы могут быть односедельными, двухседельными, с мягкими и твердыми седлами,

В зависимости от рода нагрузки на мембрану различают три типа регуляторов: с весовой нагрузкой, с пружинной и с нагрузкой, создаваемой давлением газа.

Выбор регуляторов осуществляют на основании: максимального и минимального расходов газа; колебания расхода газа в течение суток; давления газа на входе и допустимых колебаний на выходе; состава газа; места установки регулятора.

Для герметичности и полного прекращения расхода газа (например, при установке регуляторов на тупиковых участках) более целесообразно применять односедельные регуляторы, обеспечивающие наибольшую плотность закрытия. Поэтому в городском газовом хозяйстве наиболее распространены именно односедельные клапаны.

Химический состав газа влияет на срок службы регулятора и отдельных его частей, особенно на применяемые резиновые детали. В основном в регуляторах применяется бензомасломорозостойкая резина.

Регуляторы давления с пружинным управлением приводом типа РД служат для снижения давления газа со среднего или высокого на низкое. Регуляторы устанавливают непосредственно у газопотребляющих установок, в шкафах на стенах зданий и в специальных помещениях для регуляторных пунктов.

Регуляторы типа РД состоят из двух основных узлов — дроссельного органа и привода. Дроссельный орган представляет собой вентильный корпус с муфтовыми концами и имеет второй ввод газа (прямо на клапан), что позволяет располагать входной и выходной газопроводы под углом 90° и устанавливать регуляторы как на прямом, так и на угловом участке газопровода. Для удобства присоединения регуляторов к газопроводам оба входных патрубка снабжены внутренними и наружными трубными резьбами, а на выходном патрубке установлена накидная гайка с ниппелем. Дросселирующее устройство состоит из клапана и ввернутого в крестовину латунного сопла, которое сопрягается с односедельным мягким клапаном с резиновой прокладкой.

Клапан соединяется коленчатым рычагом с мембраной. Корпус регулятора соединяется с крестовиной накидной гайкой. На заданное выходное давление регулятор и предохранительно-сбросной клапан настраивают пружиной.

Предохранительные клапаны служат для сброса газа в атмосферу в случае возрастания давления в газопроводе конечного-давления сверх предельного.

В зависимости от диаметра седла увеличение давления газа на входе на 0,1 МПа вызывает рост конечного давления на 25. 80 Па.

При работе регулятора на сжиженных газах расход учитывают с коэффициентом 0,5, гарантирующим защиту регулятора от резкого понижения температуры.

Пропускная способность регулятора при начальных давлениях газа до 0,6 МПа в значительной степени зависит от варианта входа газа в регулятор. При входе газа сбоку пропускная способность меньше, чем при входе газа прямо на клапан, из-за дополнительных потерь напора в крестовине, возрастающих с увеличением расхода. Для начальных давлений от 0,6 до 1,6 МПа существенного отличия в изменении подачи газа прямо на клапан и сбоку клапана не наблюдается.

При изменении расхода газа от 5 до 100 % (100 % —номинальный расход) давление после регуляторов меняется на 7. 14 % при настройке на 2 кПа. Такое падение конечного давления при увеличении расхода вполне допустимо для регуляторов данного типа.

Увеличение давления газа на входе на 0,1 МПа вызывает увеличение конечного давления на 40 Па независимо от диаметра седла.

Регуляторы РД-32М и РД-50М заменяются регуляторами РДБК-1-25, а РДУК-2-50 и РДУК-2-100— соответственно РДьК-1-50 и РДБК-1-100. Основные характеристики регуляторов давления даны в табл. 4.6.

Регулятор давления газа домовой РДГД-20 предназначен для снижения давления природного газа со среднего уровня до низкого, а также для автоматического поддержания давления перед бытовыми газовыми аппаратами на заданном уровне. Рассчитан на работу при температуре наружного воздуха —30. 50 °С без дополнительного обогрева. Главная конструктивная особенность регулятора — встроенный отсечной клапан, выполняющий роль ПЗК ( 15).

Регулятор РДГД-20 монтируется на горизонтальном участке газопровода на высоте, как правило, не более 2,2 м стаканом вверх. В зону обслуживания при этом могут входить: отдельный подъезд секционного дома, отдельное здание или группа зданий.

Расстояние от регулятора, установленного на стене здани (кроме жилых домов, для которых размещение домовых регуляторов следует предусматривать только на глухих стенах), до оконных, дверных и других проемов должно быть не менее 1 ы по вертикали и 2 м по горизонтали при давлении газа на вход в регулятор не более 0,3 МПа. При необходимости его защищают от повреждения запирающимся металлическим кожухом.

Применение систем газоснабжения среднего давления, позволяет значительно снизить металлоемкость газовых сетей (до 30. 40%), создать наиболее благоприятные условия для сжигания газа (при стабильном давлении) и, следовательно, повысить КПД используемых приборов, улучшить санитарно-гигиенические условия газификации помещений.

Домовые регуляторы давления РДГД-20 производятся Саратовским заводом «Газоаппарат».

Регуляторы давления непрямого действия. В регуляторах непрямого действия регулирующий орган перемещается за счет вспомогательных устройств: пневматических, работающих на сжатом воздухе или газе-;

гидравлических, работающих на жидкости (масло или вода) под давлением;

электрических, в которых привод исполнительного механизма осуществляется электродвигателем или соленоидным клапаном;

электрогидравлических, у которых перестановка регулирующего органа осуществляется гидравлическим способом, а управление приводом — электрическим.

Автоматический регулятор непрямого действия состоит из следующих основных частей:

задающего устройства, при помощи которого регулятор настраивают на заданное значение регулируемой величины;

воспринимающего элемента, непосредственно воспринимающего регулируемую величину и преобразующего ее;

измерительного устройства, замеряющего сигнал, полученный от воспринимающего устройства и сравнивающего его с заданной величиной;

Читайте также:  Ниссан примера р10 регулировка холостого хода

усилительного устройства, который усиливает сигнал за счет вспомогательного источника энергии;

исполнительного механизма, непосредственно перемещающего регулирующий орган;

регулирующего органа (клапана, дроссельной заслонки и т. д.), изменяющего размер потока вещества.

Из автоматических регуляторов давления непрямого действия в практике газоснабжения наибольшее распространение получили пневматические регуляторы. Они широко применяются на газораспределительных и газгольдерных станциях, а также на крупных городских и промышленных установках, на которых не могут быть применены регуляторы давления непосредственного действия.

Простота конструкции, надежность, легкость обслуживания, а также взрыво- и пожаробезопасность являются основными достоинствами пневматических регуляторов.

Основные технические характеристики регуляторов давления

Дата добавления: 2015-06-26 ; Просмотров: 6762 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Все о транспорте газа

Давление газа регулируют с помощью регуляторов давления, которые поддерживают (стабилизируют) рабочее давление на заданном уровне при переменном расходе газа.

Регуляторы давления газа являются важнейшими приборами городских газораспределительных сетей. От их работы зависит бесперебойная подача газа к объектам газопотребления.

В зависимости от назначения и места установки используются различные регуляторы давления, отличающиеся конструктивным исполнением, формой, размерами, пропускной способностью и принципом действия. По принципу действия различают регуляторы прямого и непрямого действия.

У регуляторов прямого действия изменение конечного (рабочего) давления вызывает усилие, необходимое для осуществления регулирующего действия прибора.

У регуляторов непрямого действия изменение конечного (рабочего) давления приводит в действие лишь один из механизмов (командный прибор, регулятор управления), кото¬рый включает источник энергии и осуществляет регулирующие функции.

В зависимости от типа дроссельных устройств регуляторы могут быть одно- и двухседельными, а также с твердыми и мягкими клапанами.

На рис.75 показаны различные виды клапанов дроссельных устройств регуляторов давления: а) жесткий односедельный; б)- мягкий односедельный, выполненный из кожи или газоустойчивой резины; в) полый цилиндр с окнами для прохода газа; г) жесткий двухседельный, неразрезной, с направляющими перьями; д) мягкий двухседельный со свободно насаженными на шток клапанами.

Жесткие клапаны по сравнению с мягкими, хотя и более долговечны в работе, но с течением времени или при засоре не обеспечивают плотного закрытия седла. Клапаны жесткие двухседельные, имеющие двойное сопряжение, не обеспечивают герметичности, поэтому не используются на тупиковых газопроводах.

РЕГУЛЯТОРЫ ДАВЛЕНИЯ ПРЯМОГО ДЕЙСТВИЯ

У регуляторов давления прямого действия регулирующее устройство приводят в движение мембраной, находящейся под воздействием регулируемого давления.

Изменение регулируемого (рабочего) давления вызывает смещение мембраны, а через передаточный механизм и изменение количества прохода газа через регулирующее устройство регуляторов давления.

Таким образом, на изменение рабочего давления регулятор давления реагирует изменением количества пропускаемого газа.

Принцип действия регулятора давления прямого действия показан на рисунке.

Газ с давлением поступает во входной патрубок регулятора, затем проходит через седло клапана 2 и уходит из регулятора через выходной патрубок 3. Регулятор должен поддерживать после себя рабочее давление постоянные в условиях переменного расхода.

При изменении расхода газа будет изменяться рабочее давление которое воздействует снизу на мембрану 4. При увеличении расхода газа давление в первый момент несколько упадет и сила, действующая на мембрану снизу, несколько уменьшится, в результате чего под действием груза 5 мембрана вместе с клапаном 6 сместится на некоторую величину вниз и увеличит проход для газа. Давление поднимется до прежней величины.

При уменьшении расхода газа давление в первый момент несколько увеличится и мембрана будет смещаться вверх, прикрывая проходное сечение для газа клапаном. Уменьшение подачи газа через регулятор вызовет снижение до первоначальной величины.

Таким образом, регулятор давления будет поддерживать рабочее давление на заданном уровне, который определяется величиной нагрузки мембраны.

Учитывая, что разнообразие конструкций регуляторов давления очень велико, будут рассмотрены только те конструкции, которые широко используются при городском газоснабжении.

Регулятор давления РДК. Нормальная работа бытовых газовых приборов в большой степени зависит от постоянства давления газа во внутри домовых газовых сетях.

Давление на выходе можно регулировать в пределах 100—300 мм вод. ст. Производительность регулятора при перепаде давления в 1 кгс/см 2 и удельном весе пропанбутановой смеси около 2 кг/м 3 равна 1 м з /ч. На рис. показано устройство регулятора.

Газ высокого давления поступает через входной штуцер под клапан 2 с уплотнением из масло-, бензо- и морозостойкой резины. Положение клапана по отношению к седлу, расположенному на входном штуцере, определяется положением мембраны 3, связанной с клапаном рычажно-шарнирным механизмом.

На мембрану сверху воздействует пружина 4, а снизу давление газа. Сжатие пружины регулируется винтом 5, которым осуществляют настройку регулятора на рабочее дав¬ление. В этом случае газ, проходя через клапан, будет его и поступать через выходное отверстие 6 регулятора к газовым приборам.Если выходное давление будет повышаться сверх заданного, то пружина 4 сожмется, мембрана пойдет вверх и через рычажно-шарнирный механизм 7 подаст клапан вниз и уменьшит проход газа через регулятор. В мембрану регулятора вмонтирован предохранительный клапан 8, который работает следующим образом: при закрытом клапане 2 и повышении давления под мембраной сверх установленного (‘при отсутствии расхода газа и неплотном закрытии клапана) мембрана, преодолевая действие пружины 4 и пружины 9 предохранительного клапана 5, отойдет от уплотнения 10 и сбросит излишек давления газа через отверстие под верхнюю крышку 12 регулятора, которая соединяется выбросной трубкой с атмосферой.

После настройки регулятора на определенное рабочее давление регулировочный винт 5 закрывается колпачком 13 и закрепляется винтом 14, который пломбируется. Абонентам запрещается производить регулировку давления газа винтом 5.

Для создания нормальных условий работы регулятора давления, когда положение клапана находится в области регулирования, расчетная производительность его должна быть примерно на 20% больше требуемой максимальной производительности регулятора. По этой причине регулятор рекомендуется подбирать так, чтобы он был загружен при требуемой производительности не более чем на 80%, а при минимальном расходе не менее чем на 10%.

Читайте также:  Регулировки комбайна дон 1500 для уборки подсолнечника

РЕГУЛЯТОРЫ ДАВЛЕНИЯ НЕПРЯМОГО ДЕЙСТВИЯ

Автоматический регулятор непрямого действия состоит из следующих основных частей: а) задающего устройства, при помощи которого регулятор настраивают на заданную величину давления; б) воспринимающего элемента, который осуществляет перестановку регулирующего устройства; в) измерительного устройства, измеряющего сигнал, полученный от воспринимающего устройства, и сравнивающего его с заданной величиной; г) устройства для усиления сигнала за счет включения вспомогательной энергии; д) исполнительного механизма, перемещающего регулирующий орган (клапан или дроссельную заслонку).

Из автоматических регуляторов давления непрямого действия в газоснабжении получили пневматические регуляторы. Они широко применяются на газораспределительных и газгольдерных станциях, а также на крупных городских и промышленных установках для регулирования давления газа, где не могут быть применены регуляторы давления прямого действия. По этой причине в дальнейшем будут рассмотрены только пневматические регуляторы давления непрямого действия.

Пневматические регуляторы давления. Использование регуляторов давления прямого действия для регулирования высоких давлений газа не представляется возможным из-за тех 1 больших усилий, которые развиваются на мембраннопружинных приводах дрооссельных устройств.

Для того чтобы не увеличивать прочности мембран и не уменьшать их размеров, применяют пневматические реле, которые уменьшают силы, действующие на рабочие мембраны при использовании регуляторов на высоких давлениях.

Пневматическое реле. Устройство пневматического реле показано на схеме (рис. 85).

Пневматическое реле включается между газопроводом контролируемого давления и рабочей мембраной регулирующего газового клапана.

Назначение реле состоит в том, чтобы снижать высокое

давление и поддерживать это сниженное давление (не выше 1,1 кгс/см 2 ) над рабочей мембраной 9 регулирующего клапана 11 в зависимости от величины регулируемого давления.

На схеме положение частей регулирующего клапана следующее. Газ высокого давления Р1, пройдя газовый кран Л,. фильтр и редуктор, поступает в корпус 8 под золотник реле 7, который находится в закрытом положении.

Давление газа над рабочей мембраной 9 отсутствует, так как оно было сброшено в атмосферу через осевой канал в ниппеле 5, закрепленном на эластичной мембране 6. Под действием пружины 10 газовые клапаны подняты и находятся в открытом положе¬нии. Возможный пропуск газа через золотник 7, за счет недостаточной герметичности закрытия, будет сбрасываться в атмосферу.

При повышении регулируемого давления PS увеличится давление на мембрану реле 1 и она сместится вправо, сжимая пружину 2 и подавая шток 4 с ниппелем 5 к золотнику 7. При достижении давления Рч заданной величины ниппель 5 подойдет своим осевым отверстием к малому конусу золотника 7 и перекроет сброс газа в атмосферу.

Дальнейшее небольшое повышение давления Ру, заставит подвижную систему реле еще сместиться вправо, и тогда ниппель 5 будет открывать золотник 7 и пропускать газ на мембрану 9, которая, прогибаясь вниз, сожмет пружину 10 и несколько закроет двухседельный клапан. Контролируемое давление Рч будет снижаться до заданной величины.

В случае снижения Ps ниже заданной величины, процесс регулирования повторится в обратном порядке.

Настройка пневматического реле на определенное рабочее давление Рч осуществляется величиной сжатия пружины 2 с помощью гайки 3.

Применение пневматического реле позволяет регулировать очень высокие и очень низкие давления газа обычными регулирующими клапанами, обеспечивая при этом большую точность в стабилизации регулируемого давления на заданном уровне.

Пневматическое реле с обратной связью. Реле с обратной связью поаволяет поддерживать заданное давление в контролируемом газопроводе более постоянным и независимым при изменениях расхода газа.

На рис. 86 показано пневматическое реле с обратной связью, у которого между механизмом, воспринимающим контролируемое давление Рч, трубчатой манометрической пружиной и механизмом, регулирующим подачу газа в газопроводе, существуют прямая и обратная связи, вызывающие замедленное перемещение запорно-регулирующих деталей клапана.

В корпусе реле помещается подвижная система, состоящая из двух мембран 2 с подвешенным между ними ниппелем 3, пружины 4, золотника 5 и пружины 6. При работе реле эта подвижная система находится в равновесии под действием сил: водной стороны—давления на мембрану 2 в полости корпуса реле; с другой—действия двух пружин 4 и 6.

При горизонтальном возвратно-поступательном движении этой подвижной системы она принимает три положения, при которых: а)редуцированный и очищенный газ в фильтре 7 и редукторе 5 может поступать в над мембранное пространство привода 9 (см. стрелки), когда система находится в левом положении; б) газ из полости привода 9 может уходить на сброс в атмосферу через отверстие А (система находится в правом положении); в) газ в полости привода запирается (система находится в промежуточном положении).

Повышение давления Pi вызывает закрывание сопла 11 увеличение давления в полости N и смещение подвижной системы влево. Когда ниппель сядет на малый конус золотника 5, сброс газа из полости привода 9 в атмосферу прекратится и регулирующий клапан перестанет открываться. Давление увеличится до заданной величины и может несколько ее перейти за счет инерции регулятора. В этом случае подвижная система ‘будет смещаться еще влево, сместит большой конус золотника 5 и увеличит проход в седле 14, в результате чero увеличится проход газа из редуктора 8 в над мембранное пространство 9 и регулирующий клапан закроется.

Обратная связь способствует более плавной работе регулирующего клапана и выравниванию контролируемого давления.

Степень влияния прямой и обратной связи на процесс регулирования давления устанавливается путем изменения положения сопла 11 по горизонтали под заслонкой 10.

Настройка реле на определенное давление производится с помощью кнопки 17, связанной системой зубчатой передачи с манометрической пружиной и позволяющей изменять ее положение.

Источник