Меню

Прибор для настройки дмв антенн

Прибор для настройки спутниковых антенн – незаменимый помощник установщика антенн

Для тех, кто сталкивался с необходимостью установки комплектов спутникового телевидения что называется «с нуля», прекрасно знает, что наличие прибора для настройки спутниковых антенн решает если не все, то большинство проблем, связанных с точной настройкой системы. В этой статье мы расскажем, о том какие бывают приборы.

Для тех, кто сталкивался с необходимостью установки комплектов спутникового телевидения что называется «с нуля», прекрасно знает, что наличие прибора для настройки спутниковых антенн решает если не все, то большинство проблем, связанных с точной настройкой системы. Начиная с первых комплектов для приема сначала аналогового, а теперь и цифрового спутникового телевидения, установка спутниковой антенны выступает самым трудоемким и кропотливым участком работ.

Кроме выбора места крепления тарелки, установки кронштейна и крепления самого зеркала тарелки, точная настройка положения конвертеров с максимальным уровнем сигнала со спутника, требует большого мастерства и умения. И как ни странно, наличия всего комплекта спутникового телевидения – включая тюнер и телевизор.

И хотя многие мастера вышли на более высокий уровень мастерства – имеют в своем арсенале миниатюрный телевизор и спутниковый приемник, прибор для настройки спутниковых антенн позволяет забыть даже об этом оборудовании, его одного достаточно для работы.

Основные виды приборов для настройки антенн

Домашние бытовые приборы

Для самостоятельной установки спутниковых антенн чаще всего используется самый простой прибор — стрелочный сатфайндер. Так же бывают модификации с индикаторными или цифровыми дисплеями, но по сути своей являются приборами одного класса. Такой прибор для настройки спутниковых антенн имеет два маркированных гнезда для подсоединения телевизионного коаксиального кабеля от приемной головки и к спутниковому приемнику. Такое включение в цепь прибора для настройки спутниковых антенн дает возможность измерить качество принимаемого сигнала. И путем изменения положения зеркала антенны, крепления головок или их положения относительно всей конструкции, получить наилучший показатель уровня сигнала. Все приборы для удобства работы оснащаются звуковым сигналом, облегчающим настройку, когда условия работы не позволяют контролировать визуально экран дисплея.

Такие приборы идеальны в домашних целях, ведь обычного индикатора достаточно, чтобы настроить положение спутниковой антенны. Отлик на изменение уровня сигнала даже у таких приборов заметно ниже чем у спутниковых ресиверов и телевизоров со встроенным тюнером DVB-S2 (1-2 секунды у прибора, против 4-5 секунд у ресиверов). Однако реагировать будет на сигнал с любого спутника.

Самый простой и дешевый прибор для настройки. Подключается в разрыв коаксиального кабеля между ресивером и конвертором, питается от ресивера. Для настройки используется стрелочный и звуковой индикаторы. Имеет регулируемый аттенюатор.

Отличается от предыдущего сатфайндера наличием цифрового дисплея,вместо стрелочного.

Полупрофессиональные приборы

Следующий тип приборов для настройки антенн, можно назвать полупрофессиональными. Такие приборы внешне похожи на самые простые сатфайндеры, о которых говорилось выше. Но они предоставляют установщику данные по нескольким параметрам: частота транспондера, поляризация, символьная скорость, FEC. Что позволяет убедиться, что антенна настроена на нужный спутник. Еще одна особенность приборов такого типа, они бывают со встроенными аккумуляторами или внешними блоками питания, то есть использование ресивера и прокладки от него до антенны коаксиального кабеля на этапе настройки антенны становится не обязательным.

Отличается от SF500 наличием встроенного аккумулятора.

Профессиональные приборы

А вот для постоянной работы лучше использовать более профессиональный прибор. По сути, это целая станция, дающая возможность определить не только положение тарелки, но и увидеть на экране изображение с вещаемых со спутника каналов. Профессиональные версии таких приборов дают возможность провести установку спутниковой антенны в считаные минуты. Затратив при этом минимум усилий и получив наилучший результат.

Недорогой измерительный прибор обладающий большим дисплеем и хорошим комплектом аксессуаров (чехол, зарядка для автомобиля)

Amiko X-Finder GM Multibox (Выпускается под разными марками)

Настоящий комбайн для установщиков, помимо большого дисплея и большого комплекта аксессуаров, имеет встроенный DVB-T/T2 и кабельный тюнер DVB-C

Так же как и предыдущий прибор имеет тюнера DVB-T/T2 и кабельный тюнер DVB-C имеет чуть меньшие размеры

Источник

Как настроить антенну цифровой приставки DVB-T2

Цифровое телевидение широко распространяется в России. Закономерно, что люди охотно используют возможность получить более качественное видеоизображение и аудио-сигнал. Цифровое ТВ позволяет смотреть гораздо больше каналов, чем аналоговое. Также есть опция выбора языка вещания или субтитры, это полезно при изучении иностранных языков.

Все телевизоры с 2013 года выпуска уже поддерживают стандарт DVB-T2. Если ваш телевизор более раннего года выпуска, то можно решить вопрос, купив цифровую приставку DVB-T2. Еще ее называют ресивер или TV-тюнер.

Формат DVB-T устарел и не подходит для цифрового вещания. Необходимо учитывать эту информацию.

Настроить антенну через подключение ресивера легко. Для этого нужно:

Какая антенна нужна для цифрового ТВ

Аналоговые каналы поймать было легко, любая металлическая палочка подходила. Некоторые умельцы делали их своими руками. С цифровым вещанием не все так просто. Антенну придется купить, но выбрать ее легко. Нужна та, которая воспринимает сигналы в дециметровом диапазоне (ДМВ) 300–850 МГц.

Антенны бывают комнатными и уличными. Для жителей больших ЖК имеет смысл скинуться с соседями и поставить одну антенну на дом. В частных домах в черте города, можно воспользоваться комнатной антенной, но только при прямой видимости телебашни.

Когда ландшафт мешает приему сигнала, то и в городе, лучше выбрать внешнюю антенну. Жильцам домов, расположенных в пригородах, отдаленных от вышек районах, также подойдет уличная антенна.

Важный параметр — коэффициент усиления, который измеряется в децибелах (дБ). Чем он выше, тем качественнее изображение. Главное не переборщить, ведь все хорошо в меру. Мерой в данном случае является параметр не более 30 дБ. Этого вполне достаточно для получения качественной картинки.

К антенне необходим антенный коаксиальный кабель с волновым сопротивлением 75 Ом, со штекерами на концах. Один штекер вставляется в антенну, другой в ресивер. Кабель этот бывает разной длины, поэтому заранее измерьте расстояние от телевизора с приставкой до места установки антенны, с учетом всех изгибов. Чем выше антенна, тем лучше сигнал, но и кабеля тогда потребуется больше.

Читайте также:  Сброс настроек телефона android

Какой ресивер для цифрового ТВ лучше

Выбор большой, но для решения задачи подключения цифрового ТВ важен только один факт, стандарт DVB-T2. В остальном же ресиверы отличаются способами подключения (RCA, HDMI,SCART и др.), а также дополнительными опциями.

Ресивер может иметь USB-разъем, что удобно для воспроизведения аудио и видео файлов с флешки, внешнего жестокого диска, смартфона. Для просмотра видео с внешних устройств со звуком еще нужна поддержка Dolby Digital.

Дополнительные опции: Wi-Fi, просмотр фильмов из интернета, детский контроль, запись на внешний носитель, HDTV, носят не обязательный характер, но в зависимости от ваших задач могут быть полезны.

Полный комплект приставки включает еще блок питания, пульт дистанционного управления, инструкцию. Блок питания может быть внешним, либо встроенным. Внешний можно заменить в случае поломки. Встроенный менее практичен в этом ключе.

Мелочь, но важно! Переключать каналы теперь вы будете пультом от приставки, а не пультом от телевизора. Значит, он должен быть удобным. Обратите на это внимание.

Настройка антенны и цифровой приставки DVB-T2

Первым делом надо определить местонахождение ближайшей вышки. Для этого воспользуйтесь онлайн-сервисами. Ближайшую к вам точку трансляции ЦЭТВ (цифрового эфирного телевидения) можно найти на сайте РТРС.

С помощью карты охвата ЦТВ, также можно посмотреть ТВК (частоту передачи вашего пакета каналов), рядом будет указан статус (вещает, ожидает).

После этого определитесь с местом и способом крепления антенны. Уличные антенны надо направлять четко на источник сигнала, чтобы повысить качество передачи. Когда нашли самое удачное месторасположение, закрепите антенну с возможностью ее чуть двигать для более точной настройки в дальнейшем. В квартирах можно крепить антенну к балконной, оконной раме, ближайшей стене или на крыше (если последний этаж). В загородном доме потребуется мачта (труба диаметром 4–5 см) и кронштейн для закрепления. Далее проводим кабель по дому до цифровой приставки, эстетично выглядит, если спрятать его в кабель-канал.

Подключение антенны к цифровому ресиверу

Чтобы подключить одновременно аналоговое с цифровым телевидением, просто потребуется еще один антенный кабель. Им надо соединить гнезда ANT OUT или RF OUT на ресивере с гнездом ANT IN или RF IN на телевизоре. Пультом от телевизора выбрать источник сигнала TV и можно листать аналоговые каналы.

Источник

Прибор для настройки антенн

Прибор для настройки антенн. Информация для самостоятельных «паяльщиков».

Исходные позиции.

И вот, собравши все свои силы, в этом году мы с Владимиром RX6LDQ совершили героический подвиг – довели до рабочего образца этот прибор!

Отправной точкой при разработке являлась минимально возможная стоимость прибора. Т.к. подобные изделия от известных «брэндов» по стоимости сопоставимы с хорошей антенной и как-то раскошеливаться на такую игрушку не хотелось. Тем более что потребна она крайне редко – обычно антенны свои мы сооружаем не чаще раза в год – или в несколько лет. Почти три сотни баксов (а то и больше) отстёгивать за такой буржуйский прибор, чтобы один-два раза попользоваться и потом забыть где сия коробка валяется – кому это захочется? Не берём в расчёт фанатов антенностроения, которые большую часть своей радиолюбительской жизни проводят на крыше – честь им и хвала! Но для «нормального» радиста этот прибор по частоте применения сопоставим разве что с частотой изготовления блоков питания для своих любимых кенвудов. Посему вбухивать в него деньги как-то не особо рационально. Хотя и достаточно выгодно, т.к. настроенная при помощи такого прибора даже «верёвочная» антенна явно выиграет в конечном результате при работе в эфире, нежели скажем применённый киловаттный УМ на неизвестного происхождения и конфигурации не настроенное изделие в виде антенны. Вообщем – ситуация ясная, прибор нужен, но бабки платить буржуям нету сенсу – посему – берём сами и делаем! В первый раз что ли?

При проведении лабораторных работ было испытано несколько вариантов измерителей, благо что изобретать что-то по этой теме не нужно – описаний различных схем масса, начиная от «классики», заканчивая простейшими «замерятелями» на одном диоде.
Можно было остановиться на самом простом варианте, как скажем это сделано в антенном анализаторе MFJ-249 – т.е. что нам нужно? – генератор, частотомер и КСВ-метр. Но прикинув наши неиссякаемые интеллектуальные возможности, просто огромнейший наработанный опыт и благие пожелания трудящихся, было решено замахнуться на максимально «навороченный» вариант, но который будет укладываться в сумму до сотни американских рублей.

Схемотехника подобных приборов во многих чертах перекликается, т.к. принцип проведения измерений один и тот же. Различия в основном только в применяемой элементной базе и варианте отображения получаемых измерений. Как наиболее приемлемый вариант построения в этих ценовых рамках нам приглянулся «Антенный анализатор VK5JST» — это статья на сайте краснодарских радиолюбителей. Конечно пришлось переработать всю «цифру» и повозиться с «аналогом», прежде чем получилась вполне повторяемая и работоспособная конструкция. Больше пол года только ушло на изготовление различных вариантов печатной платы и шлифовку программного обеспечения.

Что же это такое?

В качестве генератора используется микросхема прямого синтеза DDS AD9835BRU (DD2 на схеме) от фирмы Analog Devices. Её выходной сигнал фильтруется фильтром С8,С9,С10,С11,С32,L1,L2 с частотой среза 35МГц. Далее сигнал усиливается достаточно мощным широкополосным транзисторным усилителем VT1-VT5. Амплитуда сигнала может достигать 2В эфф. Обычное значение на измерителе около 1,5В эфф. Для думающего читателя информация об амплитуде генератора скажет многое – т.е. при высокой амплитуде генератора измерителя не будет особых проблем с настройкой антенн при наличии мощных помех в КВ диапазоне.
Сигнал с усилителя поступает на измеритель VD4,VD5,VD7,C19,C21,C23,R33,R34 тип и работа которого подробно описана на сайте краснодарских радиолюбителей – статья называется «Антенный анализатор VK5JST». Кстати, номинал в 50Ом получаем при помощи включенных в параллель двух резисторов по 100Ом (R33,R34), т.к. что-то не припомню, чтобы в лёгкую можно было найти в свободной продаже резисторы номиналом 50Ом.

Читайте также:  Циклон 201 вуди настройка

С измерителя имеем три сигнала: 1.Напряжение усилителя, 2.Падение напряжения на образцовом резисторе, 3.Напряжение на нагрузке. Эти сигналы усиливаются шестью операционными усилителями DA1,DA2 и подаются на входы АЦП современного микроконтроллера PIC16F819 DD1.

В микроконтроллере зашита программа, которая производит всю математику расчёта и итоговые результаты выводятся в виде понятных нам цифирок на жидкокристаллическом двухстрочном дисплее. Традиционно – вся математика и программирование принадлежат перу Владимира RX6LDQ.

Какие функции заложены и как пользоваться?

В зависимости от типа применяемой DDS выходная предельная частота генератора может быть от 20МГц до 300МГц. Т.к. предполагается именно «народное» применение – т.е. минимально возможная цена, решено ограничиться пока 30МГц. Управление прибором осуществляется четырьмя кнопками – две кнопки К1,К2 перегон частоты вверх-вниз (UP,DOWN) по частоте, третья кнопка К4 Меню (MENU) и четвёртая К3 Шаг перестройки (SТЕР) по частоте. Шаг перестройки может быть 1кГц, 10кГц, 100кГц, 1МГц. Измерения можно проводить в линиях с волновым сопротивлением 50Ом, 75Ом, 300Ом, 600Ом.
По умолчанию программа активирована на проведение измерений в линиях 50Ом.

Каким образом перенастроить прибор для измерений в линиях с иным волновым сопротивлением? Для этой цели служат два
дополнительных резистора R36, R40. При подсоединении этих резисторов по шинам RB2, RB3 процессора, математика программы будет переключаться на измерение в линиях с волновым сопротивлением как указано в Таблице №1.
Первоначально предполагается, что прибор будет использоваться для проведения измерений в линиях с волновым сопротивлением 50Ом – посему резисторы R40,R36 в плату не запаиваются.

Таблица №1

RB2
R36

Сопротивление линии Омы

На дисплей антенного анализатора выводится информация: верхняя строчка – Рабочая Частота в кГц, S-КСВ.

Дабы меня лишний раз не обвиняли в многословии – различные вариации дополнительного применения такого прибора для измерения ёмкостей, индуктивностей, параметров передачи линий,резонансных частот контуров, входных-выходных сопротивлений УМ-ов, как высокостабильного ГССа с выходным уровнем сигнала до 2В и т.д. и т.п. здесь рассматривать не буду – об этом можно почитать на СКРе в объёмных описаниях антенного анализатора от фирмы MFJ. За что Большое спасибо и низкий поклон за сей труд Виктору Беседину (UA9LAQ)!

Перед применением прибор требует градуировки. Нажимаем кнопку Меню (MENU), видим на дисплее менюшку –

Верхний ряд: Рабочая Частота в кГц, Vi – входной уровень на измерителе (напряжение генератора).
Нижний ряд: V50 – падение напряжения на образцовом резисторе, Vо – напряжение на нагрузке.
Выставляем частоту, на которой должна работать антенна. При включении анализатора частота на дисплее 7050кГц. Если нужно далеко отстроиться от этой частоты, чтобы не жать долго кнопки перегона частоты – выставляем самый грубый шаг в 1МГц и быстро перестраиваем поближе к требуемой частоте кнопками перегона. Затем более точно подстраиваемся выбрав меньший шаг перестройки. Как выбирать шаг? Жмём на кнопку Выбор шага (STEP) и кнопками перегона частоты выбираем нужный шаг, затем снова нажимаем на кнопку выбора шага – выбранный шаг перестройки запомнился.

RB3
R40

Затем на выбранной частоте выставляем уровни на измерителе. Подстроечными резисторами R1X1-R1X градуировки выставляем уровень Vi=1021-1022. Внимание! – предельное значение напряжения, измеряемое внутренним АЦП микропроцессора, может быть 1022 (относительная величина), посему если подать на его вход напряжение бОльшего уровня (больше напряжения питания, т.е. +5В), то всё равно на дисплее будет высвечиваться значение 1022. Поэтому нужно градуировочным резистором выставить такой уровень, чтобы напряжение на входе АЦП было близко к предельному, но не превышало его. Т.е. цифры на дисплее могут «перемаргивать» с 1022 на 1021. В принципе можно выставить и более нижнее значение, но в этом случае сужаются пределы замеряемых уровней и погрешность прибора растёт при измерении дальних значений от калибровочного сопротивления.

Например, если использовать полную шкалу опорного напряжения на АЦП, т.е. значение 1021-1022, то при измерении сопротивлений бОльших от 50Ом погрешность измерений будет укладываться в приведённые выше значения. А если опорное напряжение на АЦП выставить скажем 1000, то при измерении сопротивлений выше 300Ом погрешность может достигать уже не 1%, а 10%. Хотя в целом для нас это и не важно, т.к. мы же всё равно будем изменять параметры антенны, чтобы вогнать её в требуемые 50Ом. И нам мало интересно знать сколько там имеет не настроенная антенна в действительности – 300Ом или 330Ом. Главная наша задача при помощи этого прибора добиться требуемых параметров антенны, а не заниматься лабораторными измерениями антенны в не настроенном положении.

Далее… – присоединяем к антенному разъёму калибровочное сопротивление требуемого номинала. При подсоединении калибровочного сопротивления значение Vi уменьшится – и уменьшится оно в зависимости от номинала калибровочного резистора – вот, например (смотрим верхнее фото Меню на дисплее), оно уменьшилось до значения Vi=1010 при подсоединении резистора 50Ом. Резисторами калибровки выставляем половинное напряжение от Vi значения в окошках V50 и Vо. Т.е. 1010/2=505. Накручиваем резисторами калибровки V50=505 и Vо=505. Всё, калибровка прибора произведена. Нажимаем кнопку меню – выходим в режим измерения. Отсоединяем калибровочное сопротивление, подсоединяем нашу антенну и смотрим на дисплее её параметры.
Немного по поводу качества резисторов градуировки.

Думаю понятно, что не следует в качестве градуировочного резистора использовать какие-нибудь проволочные резисторы или специальные «безындукционные» резисторы, но прицепленные к разъёму прибора на длинных проволоках? Для уменьшения паразитной индуктивности можно включать в параллель два резистора – скажем для получения 50Ом можно спаять в параллель два резистора по 100Ом. Чем выше частота измерений – тем больше сказывается паразитная индуктивность выводов резисторов. Для наших радиолюбительских целей будет достаточно применения обычных тонкоплёночных резисторов МЛТ. Для гурманов можно рекомендовать специальные «безындукционные» высокочастотные нагрузки, которые выполнены промышленностью в виде заглушенного с одной стороны удлинённого разъёма. Там внутри этого разъёма установлен специальный высокочастотный градуировочный резистор. Мне попадались такие «нагрузки» на 75Ом выполненные под разъём СР-75-166ФМВ.

Практическая реализация.

Теперь инфо для паяльщика.

На первой партии плат обнаружены хомуты:

В зависимости от типа ЖКИ номиналы резисторов R21,R22 подбираются – с HY-1602В3 R21=12k, R22=1k. Т.е. подобрать по требуемой контрастности конкретного ЖКИ резистор R22. Диоды VD3-VD8 должны быть одинакового типа. Проверял и отлаживал это устройство с обычными подобранными по одинаковому прямому сопротивлению Д9.

В качестве подстроечных резисторов R1X-R2X применил современные импортные многооборотные резисторы – см. фото платы. С такими резисторами достаточно и одного на 10-20кОм вместо двух последовательно бОльшего и мЕньшего номинала. Специально на плате разведены два последовательно, чтобы грубо подстраивать резистором бОльшего номинала, а уже точно резистором мЕньшего номинала. Посему (место на плате для этого есть) – можно поставить и обычные наши советские маленькие круглые или один многооборотный на 10-20кОм. Супервизор МС33064Р-5 можно не паять – всё работает и без него, он служит для защиты от «непредвиденных осложнений» в питающем напряжении на прибор. Подробно о супервизорах – в описании синтезаторов от UT2FW-RX6LDQ.

Всё, господа… Ваяйте. Что непонятно – после 23:00 МСК 3,710+-QRM

Как настраивать при помощи анализатора антенну?

Это «тяжкий» вопрос, т.к. нужно учитывать несколько факторов и хотя бы примерно представлять физические процессы при этой работе.

Подсоединяем анализатор к антенне и не понимаем каким образом наша антенна ещё работает… Вот такое у меня было ощущение, когда подсоединил анализатор к разъёму коаксиального кабеля четырёхугольной «рамки» периметром 80м, которую настраивал лет 10 назад при помощи обычного моста. Кстати, такое же ощущение у меня было и во время настройки той рамки, когда для проведения измерений подсоединял к ней ИЧХ Х1-38 – на экране АЧХ-ометра были видны сплошные «горбы и провалы», разобраться в которых как говорится «без бутылки» было невозможно. Посему, чтобы осознанно и правильно пользоваться этим прибором, потребуется ещё напрячься и освоить «теорию антенн и фидерных линий» для того, чтобы в итоге ваша антенна заработала должным образом.

1.Нахождение резонансной частоты антенны.
Действительную резонансную частоту антенны можно измерить только в точке питания антенны. Если вы не знается даже приблизительно резонансную частоту антенны – ни через какой полуволновый или иной какой-то «повторитель» вы не сможете её найти, т.к. на показания прибора будут влиять как «резонансы» самого кабеля, так и «резонансы» окружающих антенну металлических предметов. Если точка питания антенны труднодоступна, осваивайте чудеса верхолазания, иных вариантов нет.
Когда хотя бы приблизительно знаем резонансную частоту антенны – гоняем кнопками перегона частоту в ожидаемых пределах частоты резонанса антенны и ищем минимум значения S. Этот минимум при резонансе антенны может быть не так заметен, как нам бы этого хотелось. И чаще всего более заметен минимум в точках «резонанса» кабеля. Добавьте ещё к этому наводки на вашу антенну от мощных промышленных передатчиков, которые могут выражаться в постоянном и хаотичном изменении младших разрядов цифр значений S,R,X – радости в проведении измерений уже установленных антенн с большим периметром это не добавляет. Поэтому прежде, чем устанавливать антенну – прогоните по анализатору кабель питания и заметьте точки его «резонанса». Например, мне не удалось бы найти резонансную частоту рамки, которую использую в UB5F, растянутой между двумя пятиэтажными зданиями, если бы предварительно её не настраивал и знал где у неё был 10 лет назад резонанс. Т.к. минимум значения S незначительный и сильное влияние на измерения оказывает соседний румынский мощный длинноволновый передатчик, антенны которого находятся в пределах прямой видимости на соседнем берегу Дуная. Напротив, резонансы антенны inverted-V с двумя полотнами на 80м и 40м, которую мы установили с земляками в RU6L, очень легко обнаруживаются, по видимому из-за того, что там нет рядом мощных передатчиков и питание антенны выполнено полуволновым повторителем.

2.Измерение сопротивления антенны. При подсоединении антенны смотрим показания: R – это будет активная составляющая. Значение Х – это реактивная составляющая. Сопротивление можно измерить дистанционно через полуволновый повторитель. Но следует обязательно учитывать если R антенны сильно отличается от волнового сопротивления линии повторителя, то погрешность измерения будет большой. Но прибор тут не при чем – искажают показания потери в рассогласованной линии. Т.е. нет согласования между полотном антенны и питающей линией и анализатор покажет вам «итоговые комплексные» значения.

3.Измерение параметров кабеля. Предполагается, что начало и конец кабеля находятся рядом. Подсоединяем один конец кабеля к анализатору, а второй конец нагружаем на резистор 50Ом. Гоняем частоту на анализаторе – по изменению значений R и Х находим полуволновые и четвертьволновые резонансы кабеля. В полуволновых точках R=50Ом. Если потребуется измерить кабель скажем 75Ом-ный, а прибор градуирован на 50Ом-ные линии – не нужно ничего перенастраивать – так же подсоединяйте резистор 50Ом и к 75Ом-ному кабелю и смотрите его резонансы. За счёт небольшой рассогласовки анализатор-кабель-нагрузка на резонансах кабеля появится небольшая погрешность в измерениях – скажем вместо R=50Ом, анализатор покажет R=51Ом. Но сами резонансы никуда не денутся – частоты их останутся там же, если бы мы и дополнительно отградуировали его на измерение в 75Ом-ных линиях.

Это так сказать основные «базовые» измерения, которые можно проводить анализатором. Дополнительные замеры, скажем – определение укорочения кабеля или определение электрической длины линии неизвестной физической длины – все эти измерения обыгрываются вокруг «базовых» замеров. Анализатором можно проводить измерение и входных импедансов и резонансных частот различных устройств. Только следует не забывать, что германиевые диоды в измерителе имеют максимальное рабочее напряжение в 30В. И если вы полезете замерять анализатором резонансы П-контура УМа, не сняв с лампы анодное напряжение – последствия таких замеров будут на вашей совести.
Не ставлю себе задачу проводить здесь детальный ликбез по изготовлению и настройке антенн, и как возможности анализатора можно применить к этой теме. Т.к. масса информации уже есть на СКР. По этой теме с удовольствием побеседую в эфире или по Е-майл (ut2fw (at) mail.ru).

Ещё инфо для самостоятельных паяльщиков.

Источник

Adblock
detector