Меню

Начальная коррекция времени впрыска на хх настройка

Toyoter1 › Блог › Диагностика. Параметры коррекции состава воздушно-топливной смеси (фрагмент статьи).

В своё время сохранил себе умную статейку с умного сайта.
September 2007
V.P.Leshchenko
Images and Photos by Author
Использованы материалы Toyota Technical Training Course 852, Course 874, Course 982

Расчет базовой длительности количества топлива

Общеизвестно, что основное назначение БУ двигателем современного автомобиля это не только точное
управление составом смеси (временем открытого состояния форсунок) в соответствии с нагрузкой на двигатель и с учетом его состояния, но минимизация ущерба окружающей среде и здоровью людей. Поэтому основные «счетные» ресурсы процессора БУ направлены на решение этих задач. Расчет количества необходимого топлива происходит в несколько этапов.
• Формирование «базового времени впрыска»
• Коррекция времени впрыска по условиям эксплуатации
• Коррекция по напряжению бортовой сети
В начале БУ определяет параметры «базового» количества необходимого топлива и значение угла опережения зажигания на основании данных о частоте вращения коленчатого вала и нагрузке на двигатель. Эти значения считывается из соответствующих таблиц, запрограммированных заводом-изготовителем, и корректируется с использованием поправочного коэффициента, называемого «топливным балансом» (Fuel Trim). После этого производится коррекция состава смеси, которая обычно учитывает текущие (нынешние) параметры системы, то есть состояние двигателя и его систем в настоящее время. К таковым относятся следующие:
• температура охлаждающей жидкости
• температура воздуха во впускном коллекторе
• положение дроссельной заслонки
• состав отработавших газов
• давление в топливной системе
• атмосферное давление (высота над уровнем моря)
• нагрузка на двигатель (Calc Load) определяется по количеству воздуха, поступающего вцилиндры, определяется датчиком расхода/потока воздуха. Возможно использование различных типов: Vane Air Flow meter, Karman Vortex Air Flow meter, Mass Air Flow meter1 или датчиком разрежения (абсолютного давления) во впускном коллекторе (Manifold Absolute Pressure Sensor)
• частота вращения двигателя определяется датчиком положения коленчатого вала
• скорость автомобиля — датчиком скорости
• температура двигателя определяется датчиком температуры охлаждающей жидкости
• положение дроссельной заслонки определяется o датчиком положения дроссельной заслонки o датчиком холостого хода
• температура воздуха определяется датчиком температуры воздуха
• состав отработавших газов может определяться с помощью следующих датчиков:
кислородные датчики (Oxygen Sensor)
датчики обедненной смеси (Sensor Lean Mixture)
датчики состава топливно-воздушной смеси (Air/Fuel Ratio Sensor)
датчик содержания NOx2
• высота над уровнем моря — датчиком давления
• давление в топливной системе – соответствующим датчиком в насосе высокого давления или в топливной магистрали.
Топливный баланс и обратная связь по составу отработавших газов
Величина коррекции количества топлива, подаваемого в цилиндры по напряжению датчика содержания кислорода, зависит от различных факторов. Цель этой коррекции заключается в обеспечении стехиометрического состава смеси. Если степень необходимого вмешательства невелика, например, менее 10%, то БУ справляется с этим сравнительно легко. При необходимости изменения базового значения более чем на 20 %, т.е. для осуществления более существенного изменения, компьютер проводит процедуру «переобучения» (адаптации). Уменьшая или увеличивая базовое время впрыска топлива в пределах допустимого, он проверяет реакцию системы и устанавливает (записывает в память) новое значение этого параметра. При этом для точного поддержания стехиометрического состава топливно-воздушной смеси (14.7:1) по-прежнему используется напряжение датчиков содержания кислорода. В зависимости от различных факторов, в том числе, от высоты над уровнем моря, износа поршневой группы и форсунок, допусков на качество топлива и на изменения в состоянии двигателя, коррекция, определяемая обратной связью по составу отработавших газов, изменяется. В режиме замкнутой обратной связи по напряжению кислородных датчиков происходит изменение состава смеси посредством небольших изменений (приращений). Поэтому, если необходима относительно небольшая коррекция (до 3 %), то ECM сравнительно просто изменяет состав смеси. Обычно диапазон возможного изменения состава смеси составляют ± 20 % от его базового значения.

Пример #1. Представлены параметры исправной топливной системы. Базовая длительность при
указанной нагрузке и частоте вращения коленчатого вала составляет 3.0 мсек. SFT изменяется в диапазоне
±10%, выходное напряжение датчика кислорода переключается нормально. Система исправна и не требует вмешательства.
Пример #2. Представлены параметры при возникновении негерметичности впускного коллектора
(«подсос» воздуха). Так как нагрузка на двигатель не изменилась, то базовая длительность по-прежнему составляет 3.0 мсек.
• Дополнительный воздух обедняет смесь, поэтому уменьшается выходное напряжение
кислородного датчика.
• SFT безуспешно пытается исправить это положение, но достигает предела +20%.
• ЕСМ «узнает», что необходимо осуществить коррекцию в сторону увеличения базовой продолжительности впрыска топлива (LFT) для того, чтобы выходное напряжение датчика кислорода находилось в допустимом рабочем диапазоне.
Пример #3. Показан результат того, что ЕСМ изменил LFT на +10 %. Хотя нагрузка и частота не изменились, базовое время впрыска топлива теперь составляет 3.3 мсек.
• В этом состоянии система впрыска поставляет достаточно топлива, чтобы восстановить почти нормальное переключение напряжения датчика кислорода. Переключения происходят, но диапазон напряжения кислородного датчика смещен в зону обедненного состава смеси. Для устранения этого состояния требуется все еще чрезмерная коррекция (SFT = +15 %).
• ЕСМ проводит долговременную коррекцию базовой длительности впрыска (LFT) для того, чтобы параметр SFT снова был в диапазоне ±10%.
Пример #4. Описывает результат дальнейшего изменения LFT. Нагрузка и частота вращения коленчатого вала остались без изменения (как и в примере #1), но базовая продолжительность впрыска топлива увеличилась на 20 % и теперь стала равной 3.6 мсек.
• Базовая длительность подачи снова в пределах ±10% от заданного времени впрыска.
• Нормальные переключения датчика кислорода сопровождаются изменениями SFT ±10% от базовой продолжительности подачи топлива.
Таким образом, в результате адаптации системы впрыска к реальному состоянию системы, состав смеси становится оптимальным. В том случае, когда ЕСМ не в состоянии обеспечить необходимый состав топливно-воздушной смеси, в его память записываются коды неисправности:
P0171 System too Lean (Bank1)
P0172 System too Rich (Bank1)
P0174 System too Lean (Bank2)
P0175 System to Rich (Bank2)
Достаточно интересно влияние некоторых «непрямых» воздействий на базовую длительность впрыска. Например, отмечено уменьшение значения этого параметра после промывки форсунок. Не менее интересна реакция системы впрыска на регулировку опережения зажигания. После установки правильного начального угла опережения зажигания наблюдается уменьшение времени впрыска на холостом ходу прогретого двигателя.

Читайте также:  Настройка роутера asus wl 520gu билайн новая прошивка

Источник

MechCommander › Блог › Подготовка прошивки под откатку турбо на ШДК

Перед подготовкой прошивки нужно понять какова цель откатки. Она заключается в том, чтобы определить сколько воздуха потребляет мотор на различных режимах (в различных рабочих точках). Это осуществляется косвенным образом путём сравнения расчётной смеси и фактической. Расчётная смесь прописывается в ЭБУ, и он вычисляет длительность импульса впрыска топлива исходя из показаний датчиков и калибровок, в него заложенных, поэтому тут очень важно, во-первых, максимально точно задать тарировки всех датчиков и, во-вторых, иметь полностью работоспособный ДВС, особенно систему подачи топлива (топливный фильтр должен быть новым, все форсунки должны быть очищены и пролиты, топливный насос должен быть проверен, при наличии обратки она должна работать). Фактическая же смесь определяется датчиком кислорода (ДК, он же лямбда-зонд). При откатке на УДК у ЭБУ была обратная связь и он сам корректировал длительность впрыска топлива в соответствии с показаниями ДК, таким образом давая возможность определить сколько воздуха было потреблено. Как же быть с ШДК? Ведь без он-лайн режима у ЭБУ нет обратной связи с ШДК, и он не знает насколько фактическая смесь отличается от заданной а таблицах — эту разницу видим только мы. Соответственно наша задача состоит в том, чтобы по полученной разнице восстановить фактическое потребление воздуха мотором. Ситуация осложняется тем, что при отсутствии обратной связи эта разница может составлять несколько раз — смесь легко может выйти за пределы измерений ШДК 7.0-22.0. Слишком богатые смеси мотор сможет пережить, а вот слишком бедные смеси чреваты детонацией, особенно на турбомоторах. Поэтому при откатке без он-лайн режима даже на ШДК есть риск «положить» мотор.

1) Флаги комплектации:

☐ Датчик концентрации кислорода (вЫкл, вместо него должен быть вкручен ШДК)
☐ Адсорбер (вЫкл, поскольку его работа вносит помехи в подготовку смеси)
☐ Соленоид наддува (управление наддувом можно организовать на канале управления адсорбером)
☑ Датчик детонации (вкл при наличии)
☑ Датчик температуры воздуха (вкл, его наличие крайне желательно)
☑ Признак постоянного включения топлива (вкл, при сбросе газа подача топлива не должна прекращаться)
☑ Адаптация нуля дросселя (вкл, чтобы обороты на ХХ не плавали)

Читайте также:  Как открыть скрытые настройки bios asus

При наличии датчика фаз и фазированном впрыске
☑ Датчик фаз (вкл)
☐ Асинхронное обогащение при ускорении (вЫкл)

При отсутствии датчика фаз и попарно-параллельном впрыске
☐ Датчик фаз (вЫкл)
☑ Асинхронное обогащение при ускорении (вкл)

При наличии ИКЗ (16-клапанные моторы)
☐ Попарно-параллельный режим для катушек (вЫкл)

При наличии модуля зажигания (8-клапанные моторы)
☑ Попарно-параллельный режим для катушек (вкл)

Для ЭБУ 11183 от калиномотора
☑ ЭБУ Калина (реле вентилятора и БН)

При настройке по ДМРВ (околостоковое атмо)
Конфигурация алгоритмов J7 ES
☐ УОЗ и ALF по давлению (вЫкл)
Параметры расчета наполнения воздухом
☐ Работать без ДМРВ (ДАД или по дросселю) (вЫкл)
☑ Рассчитывать наполнение по таблице БЦН (дроссельный режим) (вкл)
☐ Таблица коэффициента выбора Тзаряда по давлению (вЫкл)

При настройке по ДАД (злое атмо или турбо)
Конфигурация алгоритмов J7 ES
☑ УОЗ и ALF по давлению (вкл)
Параметры расчета наполнения воздухом
☑ Работать без ДМРВ (ДАД или по дросселю) (вкл)
☐ Рассчитывать наполнение по таблице БЦН (дроссельный режим) (вЫкл)
☑ Таблица коэффициента выбора Тзаряда по давлению (вкл)

При 4-дроссельном впуске (лютое атмо)
Конфигурация алгоритмов J7 ES
☐ УОЗ и ALF по давлению (вЫкл)
Параметры расчета наполнения воздухом
☑ Работать без ДМРВ (ДАД или по дросселю) (вкл)
☑ Рассчитывать наполнение по таблице БЦН (дроссельный режим) (вкл)
☐ Таблица коэффициента выбора Тзаряда по давлению (вЫкл)

Для организации ШДК-регулирования подключаем аналоговый выход контроллера ШДК на 75 пин ЭБУ Январь 7.2, что подробно описано в статье DimonErshov :
Дополнительные флаги комплектации J7 ES
☑ Контроллер ШДК (пин 75)
Конфигурация алгоритмов J7 ES
☑ Широкополосное лямбда-регулирование
☑ Не экстраполировать результат работы лямбда-регулятора (запрет выравнивания таблицы обучения через градиент)
☑ Таблица самообучения по давлению (при настройке по ДАД)

Состав смеси на ХХ = здесь можно указывать любые значения, поскольку ШДК видит смесь в широком диапазоне, а не как УДК только 14.7.

Начальная коррекция времени впрыска ХХ = 1 везде.

Базовый состав смеси = здесь можно указывать любые значения, поскольку ШДК видит смесь в широком диапазоне, а не как УДК только 14.7.

Коррекция базового состава смеси = 1 везде.

Обогащение при детонации = 0 везде.

Ограничение состава смеси по температуре = здесь можно указывать любые значения, поскольку ШДК видит смесь в широком диапазоне, а не как УДК только 14.7.

Для ДМРВ или дросселей
Состав смеси от оборотов и дросселя = здесь можно указывать любые значения, поскольку ШДК видит смесь в широком диапазоне, а не как УДК только 14.7.

Для ДАД
Состав смеси от оборотов и давления = здесь можно указывать любые значения, поскольку ШДК видит смесь в широком диапазоне, а не как УДК только 14.7.

3.2) Коррекция времени впрыска

Минимальное время впрыска = 0.8 мс

Добавка при работе в попарно-параллельном режиме = 0.4 мс

Начальное значение коррекции времени впрыска = 1

3.3) Дельта давлений Рампа Ресивер

Сначала читаем эту тему. Потом ставим рампу с обраткой и радуемся.
Коэффициент коррекции времени впрыска = 1 везде.

3.4) Обогащение по открытию дросселя

Здесь необходимо иметь в виду, что при откатке турбо, в отличие от атмо, при резком открытии дросселя смесь может существенно забедняться. Поэтому должен быть ненулевым ускорительный насос по дросселю (экстраполирующий коэффициент пересчета GBC) или по давлению (экстраполирующий коэффициент пересчета давления), а обогащение должно происходить с самых малых положений дросселя (начиная с 1 %).

Экстраполирующий коэффициент пересчета GBC для обогащения = берём из штатной прошивки.

Зона нечувствительности по дросселю = 1 % (порог открытия дросселя, после которого происходит обогащение смеси при резком ускорении)

3.5) Обеднение по закрытию дросселя

Экстраполирующий коэффициент пересчета GBC для обеднения = 0

Зона нечувствительности по дросселю = 1 %

3.6) Обогащение по давлению

Экстраполирующий коэффициент пересчета давления = 0.5 везде.

Коэффициент топлива по оборотам = 0.5 везде.

Читайте также:  Настройка вифи на микротике

Коэффициент топлива по давлению = 0.5 везде.

Коэффициент уменьшения GTC 1 = 0.5

Коэффициент уменьшения GTC 2 = 1.0

Данный алгоритм необходим для работы системы с турбонаддувом для компенсации обеднения смеси при резком скачке давления. Алгоритм активен только в том случае, если система работает по ДАД. Может использоваться как вместо ускорнасоса по изменению дросселя, так и вместе с ним. Принцип работы ускорнасоса:

1) вычисляется дельта абсолютного давления между соседними рабочими циклами двигателя:

DPabs = Pabs_new — Pabs_prev

2) если дельта положительна, то проверяется условие:

DPabs > Ksens,
где
Ksens — константа «Зона нечувствительности по давлению».

3) если скачок давления положителен и превысил порог нечувствительности, то выполняется расчёт добавочной цикловой подачи:

GTCadd = DPabs * Kож * Krpm * Kprs,
где
DPabs — скачок давления;
Kож — коэффициент пересчета дельты давления в добавочное топливо (по ТОЖ, при низких ТОЖ добавочного топлива требуется больше);
Krpm — мультипликатив по оборотам (на высоких RPM добавочного топлива нужно меньше);
Kprs — мультипликатив по давлению (при высоких давлениях добавочного топлива нужно меньше).

Если в следующих циклах давление продолжает расти и дельта превышает порог нечувствительности, то выполняется новый расчёт добавочного топлива.

Если давление растёт, но незначительно, то добавочное топливо убывает по закону

GTCadd = GTCadd * KENRPRS2,
где
KENRPRS2 — константа «Коэффициент убывания 2 (давление растет)».

Если давление падает медленно, со скоростью менее, чем задано константой «Мин.спад давления для перехода на коэфф.убывания 0», то добавочное топливо убывает по закону GTCadd = GTCadd * KENRPRS1, где KENRPRS1 — константа «Коэффициент убывания 1 (давление падает)». В э том случае добавочное топливо должно убывать быстрее, чем в предыдущем случае, поэтому, следует устанавливать KENRPRS1 меньше, чем KENRPRS2.

Если давление падает быстро, со скоростью более, чем задано константой «Мин.спад давления для перехода на коэфф.убывания 0», то добавочное топливо убывает по закону
GTCadd = GTCadd * KENRPRS0,
где
KENRPRS0 — константа «Коэффициент убывания 0 (давление резко падает)». В этом случае добавочное топливо должно убывать еще быстрее, чем в предыдущем случае, поэтому, следует устанавливать KENRPRS0 меньше, чем KENRPRS1.

Для отключения алгоритма достаточно установить коэффициенты убывания в ноль. Точно таким же способом отключается и ускорнасос по дросселю (установкой в ноль коэффициентов убывания ускорнасоса по дросселю).

Ускорительный насос по давлению — один из важных механизмов расчета дополнительного топлива в режиме турбо. Фактически работает так.

Определяется дельта давления (скачок), если давление растет (требуется дополнительное топливо), дельта проверяется на превышение зоны нечувствительности.

Производится пересчет дельты давления (скачка) в дополнительное топливо с использованием 3-х таблиц:

1) Основная экстраполирующая таблица по температуре двигателя. Фактически максимальное ускорительное топливо определяется по ней путем экстраполяции скачка давления.

2) Коэффициент коррекции в зависимости от оборотов. Уменьшает полученное топливо в зависимости от оборотов двигателя (свойства впускного тракта, скорость-расход воздуха, испарение топлива).

3) Коэффициент коррекции топлива в зависимости от давления в коллекторе в момент скачка (если система работает без избытка = 1, на высоких значениях давления может принимать значения близкие к 0).

Законы убывания дополнительного топлива аналогичны дроссельному ускорительному насосу и определяются 2-мя коэффициентами убывания.

Если давление падает – дополнительное топливо должно убывать быстро, поэтому используется коэффициент уменьшения GTC 1 (который меньше). Если давление стационарно или растет, но незначительно – используется коэффициент уменьшения GTC 2 (который больше и принимает значения близкие к 1). Если давление растет значительно – производится новый расчет дополнительного топлива.

Использование ускорнасоса по давлению возможно как вместе, так и вместо дроссельного ускорительного насоса. Если вы хотите запретить один из ускорительных насосов – установите в 0 его экстраполирующие коэффициенты.

Для отключения алгоритма достаточно установить коэффициенты убывания в ноль. Точно таким же способом отключается и ускорнасос по дросселю (установкой в ноль коэффициентов убывания ускорнасоса по дросселю).

3.7) Цикловое наполнение

Для ДМРВ и дросселей
БЦН по дросселю = берём из штатной заводской прошивки.

Для ДАД
Цилиндровый объём двигателя = делим полный объём двигателя на число цилиндров.

Для ДМРВ, ДАД и дросселей
Поправка ЦН по дросселю = 1 везде.

Дополнительно для ДАД
Поправка ЦН по давлению = 1 везде.

Источник

Adblock
detector