Меню

Ir2161 с регулировкой тока и напряжения

ИИП 2161TE обладает следующими возможностями и техническими характеристиками:

Схема импульсного источника питания 2161TE:

При повторении предыдущих версий ИИП на IR2161, некоторые радиолюбители сталкивались с проблемой, которая заключалась в том, что на холостом ходу (при отсутствии нагрузки), самопроизвольно росло выходное напряжение блока питания. Случалось, что выходное напряжение росло быстро и даже превышало допустимое для выходных конденсаторов значение. Для устранения этого неприятного эффекта, с которым к слову, автор лично не сталкивался, были приняты следующие меры: выходные дросселя L2 и L3, зашунтированы низкоомными резисторами R14 и R18, а также добавлено по три нагрузочных резистора в каждое из плеч блока питания. К сожалению, вышеописанные меры не являют 100% гарантией отсутствия роста выходного напряжения ИИП на холостом ходу. Гарантией является аккуратность сборки, полное удаление остатков флюса с печатной платы и правильно намотанный силовой трансформатор.

В авторском варианте, в качестве сердечника силового трансформатора использован сердечник EI33. Трансформатор рассчитан на долговременную выходную мощность 200 Вт и выходное напряжение +/- 40 В. Первичная обмотка содержит 46 витков, намотанных в два провода, диаметр каждого из которых 0,5 мм. Каждая из вторичных обмоток содержит по 12 витков и намотана в три провода по 0,5 мм. Изоляция обмоток выполнена лавсановой термостойкой лентой: три слоя ленты между первичной и вторичными обмотками, а также по одному слою ленты после каждого слоя первичной обмотки. Части сердечника склеены клеем «момент кристалл» и стянуты несколькими витками лавсановой ленты.

Для повышения долговременной выходной мощности свыше 200 Вт и/или выходного тока свыше 2,5 А, необходимо использовать сердечник с большей габаритной мощностью и/или выходные диоды с большим допустимым током, что потребует внесения изменений в рисунок печатной платы.

Далее, по своей хорошей традиции, просто перечислю некоторые важные моменты по повторению описываемого устройства:

Печатная плата 2161TE.02, в программе Sprint Layout 5, выглядит следующим образом:

Готовая к монтажу радиоэлементов печатная плата 2161TE.00 в железе:

Авторский вариант ИИП в полностью собранном виде:

Тот же ИИП, в исполнении других радиолюбителей:

В качестве постскриптума, прилагаю модифицированную версию блока питания 2161TE, сделанную мной для питания усилителя на двух TDA2030:

Источник

Импульсный источник питания для УМЗЧ на IR2161 [2017]

Представляю вашему вниманию импульсный источник питания на микросхеме IR2161. Эта микросхема является контроллером балластов галогенных ламп, но благодаря своим свойствам отлично подходит для создания на ее основе импульсных блоков питания. Микросхема имеет встроенную защиту от перегрузки и короткого замыкания, эффективный софт-старт, защиту от перегрева и адаптивное мертвое время.

Стандартная схема включения IR2161 из даташита показана ниже:

А здесь показана схема самого блока питания, главного героя этой статьи:

Схема позволяет на ее основе собрать импульсный источник питания для УМЗЧ или других целей, мощностью до 500Вт.

Читайте также:  Регулировка оборотов трехфазного двигателя без потери мощности

При достижении определенного значения потребляемой от блока питания мощности (или при коротком замыкании на выходе блока питания), срабатывает защита. Мощность при которой будет срабатывать защита выбирается исходя из сопротивления резистора R7. Зная мощность, которую вы рассчитываете получить от данного блока питания, вы можете выбрать номинал резистора R7 из таблицы ниже.

Мощность рассеиваемая на резисторе R7 рассчитывается по формуле: Pr7 = (Pload / Vac)^2 * R7.

Трансформатор Т1 рассчитывается с применением специализированных компьютерных программ. Первичную обмотку я намотал проводом диаметром 0,5мм, 50 витков. В моем случае напряжение вторичных обмоток выбирается из расчета 3,1В на виток. Мне необходимо было получить напряжение плеча на выходе блока питания примерно 40В, а это соответствует 13 виткам в каждую из полуобмоток трансформатора. Для намотки я использовал два провода по 0,5мм. Диаметр провода обмоток я рекомендую выбирать из расчета 1мм (по диаметру провода) на каждые 3А тока, для первичной обмотки я рекомендую использовать провод 0,3мм (по диаметру) на каждые 100Вт выходной мощности, но не менее 0,5мм. Лучше мотать в несколько более тонких проводов, чем одним толстым (это связано с поверхностным эффектом). Сердечник трансформатора я взял от компьютерного блока питания, вы можете применять любой другой сердечник подходящий под ваши потребности по габаритной мощности, скорее всего для этого придется немного изменить печатную плату.

Хочу обратить ваше внимание на то, что необходимо применять только оригинальные ключи IRF740. На рынке встречается очень много их подделок. С поддельными ключами, блок питания работать не будет. Оригинальные ключи производства Vishay выглядят таким образом (транзисторы от других производителем могут выглядеть иначе):

Правильно собранный из исправных деталей, блок питания, начинает работать сразу же после первого включения и в какой-либо настройке и регулировке не нуждается.

В приложении находится два варианта печатных плат: один вариант с выпрямителем VDS1 на основе дискретных диодов 1N5408, второй вариант с выпрямителем на основе диодной сборки RS607.

Источник

Данная статья посвящена серии импульсных источников питания 2161 Second Edition (SE) на основе контроллера IR2161.

С момента публикации первой статьи о импульсном источнике питания (ИИП) на основе IR2161 прошло совсем не много времени, тем не менее за этот короткий промежуток времени мной была проделана большая работа по исследованию контроллера IR2161 и усовершенствованию ИИП на его основе. Работа все еще ведется, но на данный момент достигнута определенная логическая точка на которой я решил пока остановиться.

Здесь будет рассказано о трех законченных ИИП на основе IR2161, каждый из которых будет лучше предыдущего, будут приведены их схемы, печатные платы и описаны некоторые важные моменты.

Но прежде чем начать рассказ непосредственно о самих блоках питания, хочется остановится на самой IR2161 и подробно описать принцип и особенности ее работы. Как показало время, даже те кто собирают свои собственные импульсные блоки на 2161, плохо представляют как эта микросхема работает (китай+, привет). Именно по этой причине, можно встретить очень много элементарных вопросов на которые без труда можно было бы найти ответы в даташите, но видимо не все сами способны понять изложенный там материал, а многие попросту ленятся вникать.

Читайте также:  Схема регулировки клапанов ваз 21011

Контроллер IR2161 включает в себя все необходимые защиты, а также позволяет приспосабливать преобразователь для диммирования стандартным димером фазового регулирования (возможность диммирования для наших целей не имеет никакого значения). Имеется также компенсация выходного напряжения в зависимости от мощности потребляемой нагрузкой. IR2161 имеет адаптивное мертвое время что улучшает стабильность работы и частотную модуляцию «dither» для снижения электромагнитного излучения (ЭМИ). Все это интегрировано в маленький 8-контактный DIP или SOIC-корпус, позволяющий сделать размеры ИИП как можно меньше.

Кратко перечислю возможности IR2161 перечисленные в даташите:

Приведу некоторые важные для нас технические характеристики:

— Максимальный втекающий/вытекающий ток: +/-500мА
Достаточно больший ток позволяет управлять мощными ключами и строить на основе данного контроллера довольно мощные импульсные блоки питания без использования дополнительных драйверов;

— Максимальный потребляемый контроллером ток: 10мА
Ориентируясь на это значения проектируются цепи питания микросхемы;

— Минимальное рабочее напряжение питания контроллера: 10,5В
При меньшем значении напряжения питания контроллер переходит в UVLO режим и осцилляция прекращается;

— Рекомендуемое рабочее напряжение питания контроллера: не менее 12,7В
Напряжение питания при котором контроллер будет уверенно работать;

— Минимальное напряжение стабилизации встроенного в контроллер стабилитрона: 14,5В
Внешний стабилитрон должен иметь напряжение стабилизации не выше этого значения чтобы избежать повреждения микросхемы из-за шунтирования избыточного тока на вывод COM;

— Напряжение на выводе CS для срабатывания защиты от перегрузки: 0,5В
Минимальное напряжение на выводе CS при котором происходит срабатывание защиты от перегрузки;

— Напряжение на выводе CS для срабатывания защиты от короткого замыкания: 1В
Минимальное напряжение на выводе CS при котором происходит срабатывание защиты от короткого замыкания;

— Мертвое время по умолчанию: 1мкС
Используется в случае невозможности работать в режиме адаптивного мертвого времени (ADT), а так же при отсутствии нагрузки;

— Частота работы в режиме софт-старта: 130кГц
Частота на которой работает контроллер в режиме софт-старта;

Для понимания далее излагаемого материала вам потребуется типовая схема включения IR2161, поэтому я просто оставлю ее здесь, а вы по мере повествования поглядывайте в нее.

Далее вашему вниманию представляется блок-схема показывающую режимы работы контроллера и порядок их работы:

Основное внимание сейчас следует уделить на то, какие существуют режимы работы микросхемы и в какой последовательности они расположены друг относительно друга. Основное внимание я уделю описанию принципа работы каждого из блоков схемы, а последовательность их работы и условиях перехода из одного режима в другой опишу более кратко. Начну с описания каждого из блоков схемы:

Читайте также:  Регулировка сцепления на жигулях

Проблема софт-старта. Хочется быть полностью честным и упомянуть тот факт, что при наличии на выходе блока питания фильтрующих конденсаторов большой емкости, софт-старт чаще всего не срабатывает и ИИП запускается сразу на рабочей частоте минуя режим софт-старта. Происходит этого по причине того, что в момент старта, разряженные конденсаторы во вторичной цепи имеют очень низкое собственное сопротивление и для их зарядки требуется очень высокий ток. Этот ток вызывает кратковременное срабатывание защиты от короткого замыкания, после чего контроллер сразу же перезапускается и переходит в режим RUN, минуя режим софт-старта. Бороться с этим можно увеличением индуктивности дросселей во вторичной цепи, стоящих сразу после выпрямителя. Дроссели с большой индуктивностью растягивают процесс заряда выходных фильтрующих конденсаторов, другими словами, конденсаторы заряжаются меньшим по величине током, но дольше по времени. Меньший зарядный ток не вызывает срабатывания защиты при старте и позволяет софт-старту нормально выполнять свои функции. На всякий случай, по поводу этого вопроса я обратился в техническую поддержку производителя, на что получил ответ:

«Типичный галогеновый преобразователь имеет выход переменного тока без выпрямительных или выходных конденсаторов. Мягкий пуск работает, уменьшая частоту. Для обеспечения плавного пуска необходимо, чтобы трансформатор имел значительную утечку. Однако это должно быть возможно в вашем случае. Попробуйте поместить индуктор на вторичной стороне от мостовых диодов к конденсатору.

С наилучшими пожеланиями.
Infineon Technologies
Steve Rhyme, Support Engineer»

Мои предположения по поводу причины неуверенной работы софт-старт оказались верны и более того, даже способ борьбы с этой проблемой мне предложили такой же. И снова, чтобы быть до конца честным, следует добавить что применение катушек с повышенной индуктивностью, относительно обычно применяемых на выходе ИИП, ситуацию улучшает, но полностью проблему не устраняет. Тем не менее, с этой проблемой можно мириться учитывая что по входу ИИП присутствует термистор, ограничивающий пусковой ток.

Существует так же возможность приладить к IR2161 обратную связь, которая позволит организовать почти полноценную стабилизацию выходного напряжения и позволит значительно более точно отслеживать и поддерживать на выходе необходимое напряжение:

Подробно рассматривать эту схему в рамках данной статьи мы не будем.

Блоки Fault Timing Mode, Delay и Fault Mode, хотя и показаны на блок-схеме, но по сути режимами работы контроллера не являются, скорее их можно отнести к переходным стадиям (Delay и Fault Mode) или условиям перехода из одного режима в другой (Fault Timing Mode).

Источник

Adblock
detector