Меню

Автоматическая регулировка усиления сигналов

Система автоматической регулировки усиления

Системы автоматической регулировки усиления (АРУ) широко применяются в радиоприемных устройствах различного назначения, они предназначены для стабилизации уровня сигнала на выходе усилителей при большом динамическом диапазоне изменения входного сигнала, достигающим, например, в радиолокационных приемниках 60—100 дБ. При таком диапазоне изменения входного сигнала и отсутствии системы АРУ нарушается нормальная работа приемных устройств, что проявляет­ся в перегрузке последующих каскадов приемника. В сис­темах автоматического сопровождения цели РЛС перегрузка каскадов приемника приводит к искажению ам­плитудной модуляции, к снижению коэффициентов усиления, вплоть до срыва сопровождения. В системах стабилизации частоты большой динамический диапазон изменения сигнала вызывает изменение крутизны дискри­минационной характеристики, что резко снижает качество работы системы.

Системы АРУ делятся на три основных типа [7]: 1) с обратной связью (с обратным действием); 2) без обратной связи (прямого действия); 3) комбинированные. Существуют одно- и многопетлевые системы АРУ с не­прерывной и цифровой регулировкой.

Функциональная схема системы АРУ с обратной связью показана на рис. 1.13. Входное напряжение uвх(t) поступает на усилитель (У) с регулируемым коэффициентом усилении. Выходное напряжение этого усилителя детек­тируется, после чего суммируется с напряжением задерж­Ки uз. Суммарное напряжение ис усиливается усилите­лем постоянного тока (УПТ) и подается на фильтр ниж­них частот (ФНЧ). Напряжение с ФНЧ uу используется для регулировки коэффициента усиления входного сигнала. Зависимость коэффициента усиления усилителя входного сигнала от управляющего напряжения называ­ют регулировочной характеристикой. В общем случае эта характеристика нелинейная, однако приближенно она может быть заменена линейной зависимостью вида

где k — коэффициент усиления при управляющем напря­жении, равном нулю; а — крутизна регулировочной ха­рактеристики.

Изменение коэффициента усиления может быть достигнуто различными способами: путем включения управляемого аттенюатора, изменением крутизны характери­стик электронных приборов и др. [7]. В качестве приме­ра на рис. 1.14 показана схема усилителя с регулируе­мым коэффициентом усиления, в котором управляющее напряжение подается на базу транзистора VT. При уве­личении управляющего напряжения напряжение на ба­зе повышается, в результате чего коэффициент усиления каскада уменьшается.

Эффект стабилизации уровня выходного напряжения uвых(t) достигается за счет того, что с ростом уровни uвых(t) увеличивается и управляющее напряжение uу, под действием которого в соответствии с выражением (1.22) уменьшается коэффициент усиления усилителя входного сигнала, что приводит к снижению уровня вы­ходного сигнала.

Для того чтобы не снижать усиление при слабых входных сигналах и начать управление коэффициентом уси­ления усилителя только при достижении входным сигна­лом определенного уровня в систему АРУ подают напря­жение задержки ЕЕЕ3. В результате напряжение управления появится только в том случае, когда напряжение с амплитудного детектора превысит напряжение за­держки.

ФНЧ в цепи обратной связи системы АРУ предназначен для передачи управляющего напряжения с частотами изменения уровня выходного напряжения АРУ. При этом ФНЧ не должен пропускать колебания управляю­щего напряжения с частотами спектра полезной модуля­ции сигнала uвх(t), в противном случае происходит де­модуляция входного сигнала, ослабляющая выходной сигнал.

Непосредственно из схемы рис. 1.13 следует, что напряжение на выходе УПТ

если

, если (1.23)

где kд— коэффициент передачи детектора.

Управляющее напряжение на выходе ФНЧ находят из следующего дифференциального уравнения:

Напряжение на выходе системы АРУ

(1.25)

Уравнениям (1.23) — (1.25) соответствует структурная схема системы АРУ, изображенная на рис. 1.15. В этой схеме нелинейное звено описывается зависимостью

(1.26)

Отличительной особенностью системы АРУ по сравнению с системами РА, рассмотренными в предыдущих параграфах, является зависимость коэффициента передачи системы от времени, что происходит из-за наличия в системе (рис. 1.15) звена с коэффициентом передачи k(t). Кроме того, из-за нелинейного звена с характеристикой (1.26) система АРУ является нелинейной. Анализ нелинейных систем с перемен­ными параметрами явля­ется сложной задачей

Читайте также:  Регулировка карбюратора рмз 385

В установившемся режиме при постоянном уровне напряжения на входе системы АРУ из уравнений (1.23) — (1.26) следуют следующие соотношения:

(1.27)

где kупт — коэффициент усиления УПТ.

Уравнение (1.27) определяет регулировочную характеристику системы АРУ с обратной связью (кривая 2 на рис. 1.16). на этом же рисунке изображена характе­ристика без АРУ (кривая 1) и регулировочная характе­ристика с идеальной системой АРУ (кривая 3).

Источник

Автоматическая регулировка усиления

АРУ применяется для исключения перегрузки выходных каскадов приёмников при больших входных сигналах. Используется в бытовой аппаратуре, в приёмниках спутников связи и т. д. Также, существует ручная регулировка усиления (РРУ), выполняется на пассивных или активных (электронных) радио-элементах или с помощью аттенюаторов. [1]

Содержание

История создания

В 1925 Гарольд Олден Уилер изобрел автоматическую регулировку громкости (АРГ) и получил патент. Карл Кюпфмюллер издал анализ систем АРУ в 1928. [2] К началу 1930-х все бытовые радиоприемники включали автоматическую регулировку громкости. [3]

Классификация

Существует три типа АРУ: простая, усиленно-задержанная и просто задержанная. Или по типу сигнала схемы АРУ бывают двух типов:

Также, если искажения сигнала не важны, применяют схему ограничителя.

Устройство

Напряжение сигналов, поступающих на вход приёмника, как правило значительно меняется: из-за различия передаваемой мощности передатчиков и расстояний их от места приёма, замираний сигналов при распространении, резкого изменения расстояний и условий приёма между передатчиком и приёмником, установленными на движущихся объектах (самолётах, автомобилях и т. д.), и других причин. Это приводит к недопустимым колебаниям или искажениям сигналов в приёмнике. Система АРУ стремится минимизировать различия напряжения выходного и входного сигнала приёмника. Это осуществляется посредством цепей, которые передают выпрямленное детектором регулирующее напряжение на базы транзисторов, усилителей высокой, промежуточной частоты и преобразователя частоты, которые уменьшают их усиление с увеличением напряжения сигнала на входе и наоборот: происходит компенсация в приёмнике изменений напряжения входных сигналов. Основные параметры систем АРУ:

Важным свойством системы АРУ является наличие выхода, показывающего уровень входного сигнала (невозможно сделать для ограничителя).

Схемы АРУ

Обратная

Прямая

Входное напряжение Uвх детектируется, и за счёт этого формируется управляющее напряжение Uупр. Выходное напряжение получается путём умножения Uвх на коэффициент усиления Ko. Таким образом, при увеличении Uвх уменьшается Ko; при этом их произведение может оставаться постоянным, что позволяет реализовать идеальную характеристику АРУ, но практически добиться этого не удается. Прямая схема АРУ имеет некоторые существенные недостатки, один из которых состоит в необходимости включать перед детектором в цепи АРУ дополнительный высокочастотный (ВЧ) усилитель с большим коэффициентом усиления, прямая АРУ также нестабильна, то есть подвержена воздействию различных дестабилизирующих факторов. В связи с этим она нашла ограниченное применение.

Пассивная

Пассивные АРУ-устройства, не потребляющие электрическую энергию, то есть не имеющие в своём составе источников тока. Как правило, такие пассивные АРУ выполняются в виде аттенюаторов, каждый из резисторов которого представляет собой термосопротивление (термисторы). С повышением температуры сопротивление увеличивается, что вызывает уменьшение вносимого ослабления аттенюатором. И, наоборот, при понижении температуры окружающей среды ослабление аттенюатора увеличивается.

Автоматическая регулировка уровня записи

Способ АРУЗ заключается в том, что:

Источник

Использование усилителя с АРУ как мягкого ограничителя уровня сигналов

Предлагаемый усилитель с автоматической регулировкой усиления (АРУ) может использоваться для «мягкого» и с минимальными искажениями ограничения уровня сигнала относительно его пикового значения. Последнее важно подчеркнуть: управление усилением происходит не по среднеквадратичному значению сигнала, а именно по абсолютному. Это бывает необходимо для некоторых систем обработки речи, систем связи и т. д.

Читайте также:  Регулировка винта дроссельной заслонки ланос

Обычные усилители с АРУ в таких приложениях работать корректно не могут и, кроме того, имеют довольно высокие уровни общих гармонических искажений. Поскольку опираются они на среднеквадратичный уровень сигнала и, следовательно, имеют задержку реакции АРУ, такие усилители часто отличаются еще одной весьма неприятной особенностью, которую можно назвать «временное замирание сигнала» или «схлопывание». Этот эффект проявляется в усилителе с АРУ, когда схема регулировки усиления начинает работать в режиме захвата, то есть, когда управление сигналом по обратной связи АРУ «включено». Это присущее таким усилителям свойство, которое проявляется в мгновенном снижении уровня сигнала с его последующим медленным нарастанием до точки регулирования передаточной характеристики.

Кроме того, используемые обычно простые усилители с АРУ по разному реагируют на положительные и отрицательные полуволны сигнала, поскольку, как правило, используют однополупериодный выпрямитель. Иногда это может быть недопустимо, например, если строго задан уровень модуляции, или если недопустима перегрузка АЦП. Указанные негативные эффекты должны быть исключены, в особенности в тех системах, которые предназначены для передачи или обработки речи, где первостепенное значение имеет речевая разборчивость. Принципиальная схема «мягкого» ограничителя сигналов без перечисленных выше недостатков представлена на Рисунке 1.

Рисунок 1. Мягкий ограничитель уровня сигнала.

Устройство состоит из регулируемого аттенюатора (R4, RDS_VТ1), усилителя (DA1-1), прецизионного двухполупериодного выпрямителя (DA1-2, DA1-3) и порогового элемента управления (VT2) с емкостным интегратором (R7, C4). (RDS_VТ1 – сопротивление канала VT1). Входной сигнал поступает на усилитель через регулируемый аттенюатор. В отличие от обычных устройств, этот аттенюатор необходимо настроить таким образом, чтобы входной сигнал сразу был ослаблен примерно на 1 дБ. Это должно быть выполнено при отключенной обратной связи по АРУ. Регулировка производится подстроечным резистором R6. Последнее исключительно важно, поскольку именно эта настройка полностью устраняет вредный эффект, названный выше как «временное замирание сигнала».

Выбор типа регулирующего транзистора весьма важен, так как он влияет на снижение эффекта «временного замирания сигнала».

Сопротивление канала транзистора VT1 в открытом состоянии (RDS_ON) вместе с номинальным значением резистора R4 определяет максимальный динамический диапазон устройства в части глубины регулировки АРУ. Вычислить этот диапазон можно по формуле

Причиной высоких общих гармонических искажений обычных усилителей с АРУ являются большие нелинейные искажения, вносимые регулируемым аттенюатором. Снизить эти искажения можно с помощью специальной дополнительной RC-цепочки (C3, R13, R14), то есть путем введения в регулирующий элемент VT1 отрицательной обратной связи по затвору. Вторая проблема (реакция на амплитуду любого знака) решается путем использования схемы прецизионного двухполупериодного выпрямителя.

Важным элементом цепи управления является транзистор VT2, изменяющий напряжение на затворе транзистора VT1 в соответствии с абсолютным уровнем входного сигнала. При снижении напряжения на затворе VT1 уменьшается его сопротивление, что, соответственно, уменьшает коэффициент передачи аттенюатора. Таким образом, уровень выходного сигнала схемы не будет превышать установленного значения тех пор, пока напряжение на затворе транзистора VT1 не станет равным нулю. В этом случае транзистор VT1 будет полностью открыт.

Разборчивость речи зависит от постоянной время интегратора (R7, С4), которая может быть подобрана экспериментально. Приемлемыми для речевого сигнала значениями будут R7 = 330 кОм и C4 = 10 мкФ. Подстроечным резистором R12 устанавливается необходимое максимальное значение амплитуды выходного сигнала. Подчеркнем еще раз, что схема не работает со среднеквадратичными значениями! Естественно, что максимальная амплитуда выходного сигнала не может быть меньше, чем порог включения VT2, для слаботочных кремниевых транзисторов равный примерно 0.68 В. Именно до этого значения амплитуды усилитель ведет себя как обычный линейный, а затем меняет свой коэффициент передачи, фиксируя максимальную амплитуду сигнала на новом уровне, после чего опять работает линейно без компрессии до восстановления интегратора и нового захвата. Необходимый уровень входного сигнала может быть установлен выбором соответствующего коэффициента усиления DA1–1, который можно рассчитать по формуле

Читайте также:  Регулировка клапанов квадроцикла стелс 600 леопард видео

Естественно, что это справедливо только в рабочей полосе частот.

Описанное устройство имеет очень малое время отклика, составляющее менее половины периода входного сигнала.

Выводы

Основные особенности мягкого ограничителя:

Впервые это устройство использовалось автором в качестве ограничителя модуляции в одном из его персональных проектов. Здесь было необходимо обеспечить условие, чтобы амплитуда сигнала (в любой промежуток времени и любой полярности) не превысила строго заданный уровень. Это требование должно было выполняться в широком динамическом диапазоне входных сигналов, при низком уровне общих гармонических искажений и без заметного искажения артикуляции. Таким образом, использование известных схем ограничения было невозможным. Автором было проверено много технических решений, в результате чего выяснилось, что проект, представленный на Рисунке 1 – наилучший.

Это же решение автор использовал в составе музыкальной системы в качестве автоматического микшера ди-джея. В этом варианте на вход устройства через сумматор подавались два сигнала (музыка и голос), но их общий уровень автоматически поддерживался постоянным. Так, уровень музыкального сигнала без ручного микширования автоматически уменьшался, как только ди-джей начинал говорить, и плавно возвращался на заданный прежний уровень, если ди-джей замолкал. При этом отсутствовала перегрузка усилителей и акустических систем. Эта же идея использовалась и в качестве базы для прецизионного генератора синусоидальных сигналов на основе моста Вина. Результаты использования такого решения были превосходны и превзошли все ожидания.

Примечание редакции

Эта публикация может считаться дополнением к изданной нами ранее статье «Практика использования ИМС усилителей с АРУ серии SSM21xx» (РадиоЛоцман, 2014, май, июнь), в которой был описан усилитель с АРУ по среднеквадратичному значению сигнала.

Уменьшение нелинейных искажений основанного на полевом транзисторе регулирующего звена аттенюатора за счет введения отрицательной обратной связи описывается, например, в книге: Титце У., Шенк К. «Полупроводниковая схемотехника» 12-е изд.: Пер. с нем. – М., ДМК Пресс, 2007.

Описание использованного в рассмотренной схеме двухполупериодного выпрямителя можно найти в книге: Л. Фолкенберри «Применение операционных усилителей и линейных ИС», Пер. с англ. – М.: Мир, 1985. Обе книги имеются в Интернете и доступны для скачивания. В таком выпрямителе для повышения точности на малых сигналах лучше использовать диоды Шоттки, например, BAS40-04, но для рассматриваемой схемы это несущественно.

Значение сопротивления канала в открытом состоянии RDS_ON для маломощных полевых транзисторов не всегда приводится в спецификациях, но его легко вычислить через крутизну (S) транзистора, так RDS_ON = 1/S. Кстати, в схеме можно использовать отечественный полевой транзистор КП103М1: S = (1.3…4.4) мА/В, VGS_OFF = (2.8…7) В.

Если максимальная амплитуда выходного сигнала должна быть меньше указанного в статье значения 0.68 В, то следует изменить коэффициент усиления в двухполупериодном выпрямителе. Необходимое усиление устанавливается увеличением номиналов резисторов R11 и R3 относительно номиналов остальных резисторов выпрямителя. Для правильной работы выпрямителя не забывайте соблюдать соотношения номиналов резисторов R11 = R3, R5 = R1 = R2. При этом коэффициент усиления выпрямителя рассчитывается как KU = R3/R5.

Перевод: В.Рентюк по заказу РадиоЛоцман

Источник

Adblock
detector